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Abstract 

We show that for a general fibre Xs of the Hessian family X of elliptic curves the mixed 
Hodge structure on the cohomology group H2(X,X~) is a non-splitting extension of  27(-2)  4 by 
Hi(X,). @ 1998 Elsevier Science B.V. 

1991 Math. Subj. Class.." 14C30, 14D07, 57R19 

This paper is the object o f  the author's test problem within the courses o f  the 

Master Class 1994/1995 at the Mathematical Research Institute in the Netherlands. 
This problem was given to me and supervised by J. Steenbrink from the Katholieke 
Universiteit Nijmegen. As I understood, the question arose to him after being confronted 

with a lecture o f  C. Deninger concerning the relation between extensions o f  mixed 

motives and higher K-groups. 
We choose homogeneous coordinates ( x : y  :z)  on P~ and (~ : f l )  on P~ and consider 

the projective complex surface 

= {fix 3 + fly3 + f l z3  _ 3exyz  = 0} C p2 x P~ 

together with the flat morphism f:2 ~ p~ induced by the second projection. We have 
2 as blowing up of  p2 in 9 points due to the first projection, precisely as blowing 
up with centre in V+(x 3 + y3 ÷ z3 ,xyz) .  We think of  C as embedded into P~ by 

identifying 2E  C with the point (2:  1)E p l ( C )  and we will denote the point ( 1 : 0 )  

with oc. For s E P~ we denote with Xs the fibre o f  f over s. I f  p is the third root of  

* Tel.: 49 30 2093 1440; fax: 49 30 2093 1866; e-mail: matuschk@mathematik.hu-berlin.de. 

0022-4049/98/$19.00 @ 1998 Elsevier Science B.V. All rights reserved 
PH S0022-4049(97)00161-8 



202 A. MatuschkelJournal  o f  Pure and Applied Algebra 124 (1998) 201-210 

Table 1 

Subset in p2 × p l  Coordinates/equations 

UI = {f lT~0,zsZ0} x 1 = x/z, Yl =y / z ,  ~I =o¢/fl 

Ji = x ~  + y~ + 1 - 3~lx lYl  

U2 = {fl ¢ 0 ,  y ¢ 0 }  X 2 =x / y ,  Y2 =z / y ,  O: 2 = O~/fl 

I, = 4  + y~ + 1 - 3~x~y~ 
g l = ~ 3 - -  I 

U 3 = { ~ ¢ 0 , x - - 2 # 0 }  x 3 =X/ (X- -Z) ,  Y3 = y / ( x - - Z ) ,  0~3 =f l /~  

J3 = 2a3x 3 -- 3a3x3 2 + 3X3X3 -- C~3 -- 3x2y3 -'r 3x3Y3 

0'3 = ~ -- g3 

U4 = {a ¢ 0 , x  - y=fi0} X4 = x / ( x  -- y), Y4 = z / ( x  - y), :z4 =fl/'a 

j'4 = 2~4X43 -- 3~4 x2 + 3:z4x4 -- ~4 -- 3 d y 4  + 3x4Y4 

0'4 = 0~44 - -~4 

unity ( - l  + x/Z-3)/2, then )(1, Xp, Xp2 and X ~  are the singular fibres o f f ,  each o f  them 
isomorph to three lines crossing in three different points. For S = P~ - {1 ,p ,p  2, oc}, 

D=X1UXRUXR2UX~, X = X -  D and f = f [ x ,  we have f :X- -+S as a smooth 
projective family of  elliptic curves, known as Hessian family. This family admits an 
interpretation as universal family of  elliptic curves with weak level-3 structure. The 
various statements in this second paragraph can be checked easily from an open affine 
covering X=[_J  v / g i v e n  by the Table 1 with /7//= V ( f ) C  U,.=SpecC[xi, yi,~xi] and 

with D n Vii = V(gi) c Vii. 
I f  we consider for an arbitrary point s C S the embedding Xs ~ X, then the long 

exact sequence of  relative cohomology groups 

• -. ---, H 1 (X)  ---+ H 1 (X,) --+ H 2 0 ( ,  X s  ) ---+ H 2 ( X )  --+ H 2 ( X s  ) --+ • • - 

is an exact sequence o f  the associated mixed Hodge structures by [4, 8.3.9]. For any 
inclusion ~ : 2 ( -2 ) ' - - -+H2(X)  the image of  im e in H2(Xs) vanishes, as the weights are 
different. Since 2 is rational, we have H I ( X )  = 0 and since W1HI(X)Q = i m ( H l ( k ,  Q)  
--+H1(X,Q)),  we conclude that the weights occurring in H~(X) are greater than 1. 
Therefore, Hi(X)---+HI(X,) is the zero map and if we let No denote the inverse image 
of  im e in H2(X, Xs), then we obtain by the short exact sequence 

O----* H1(Xs)--+ N~ - - ~ i m ~ - * O  

an element q~ E EXt(mH,)(H 1 (As), 2~(-2)).  The question is, if  t/~ is non-trivial and what 

is the geometric meaning of  these extensions. A first step on this way is 

Proposition 1. For the mixed Q-Hodge structures on the non-vanishin9 rational coho- 
mology groups of X we have isomorphisms H°(X)Q TM Q, HI(X)~ -~ Q ( -  1 )3, H2(X)Q 

Q ( -  1 ) @ 0 ) ( - 2 )  4 and H 3 ( X ) ~  - Q ( - 2 )  3. 
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Proof. We are to use the weight spectral sequence with respect to the compactification 
X ~--~X as in [3, Th6or6me 2.3.5]. For that we recall that H ° 0  ~) = 77, H4(a ~) = ~(-2),  
H 1 0 ( ) = H 3 0 ? ) = 0  and H 2 0 ? ) = Z ( - 1 )  1°, where as generators for H2()?) we can 

choose the cohomology classes of F, E1 . . . . .  E9 with F a general line on )(, i.e. coming 
from p2 and E1 . . . . .  E9 the exceptional lines of the blowing up )? ---, P~. Every line Ei 
corresponds to the blowing up of p2 in a point ei and for later computations we fix 

el = ( 0 : - 1  : 1), e4 = ( - 1 : 0 :  1), e7 = ( - 1  : 1:0), 

e2 = ( 0 : - p :  1), e5 = ( - p : 0 :  1), e8 = ( - p :  1:0), 

e 3 = ( 0 : - p 2 : l ) ,  e 6 = ( - p 2  :0: l), e g = ( - p 2 : l : 0 ) .  

Let D(m) be the normalisation of all m-fold intersections of components of D. For 
i E {1,p, p2,0c} we have X/=Lil  ULi2 ULi3 with Lij ~ pl  due to the equations 

Lal = v+(~ - ~ , ( 1  - p 2 ) x  + ( p  - 1)>, + ( p 2  _ p ) z ) ,  

Lpl = V+(p2~ - ~,(p2 _ p)x + (p - 1)y + (p - 1)z), 

L12 = V+(~-fl ,(1 - p)x + (p 2 -  1)y + ( P -  P2)Z), 

Lp2 = V+(P 2:~ - f l , ( p 2  1 ) x  + (p2  _ l ) y  + (1 - p)z), 

L~3 = V+(:~ - fl,(p - p2)x + (P - p2)y -t- (p - p2)z), 

Lp3 = V+(p2~ - fl,(p - 1)x q- (p2 _ p)y  + (p _ 1)z), 

L p 2 t = V + ( p c t _ ~ , ( p _ l ) x + ( p - 1 ) y + ( 1 - p 2 ) z ) ,  Lool=V+(~,x), 

L o 2 z = V + ( p ~ _ p , ( p - p Z ) x + ( p 2 - 1 ) y + ( p 2 - 1 ) z ) ,  Lo~2=V+(~,y), 

Lp23=l /+(p~-~ , (1 -p2)x  + ( p 2 - p ) y + ( 1 - p 2 ) z ) ,  Loo3=V+(fl, z) • 

We put Pil =Li3 NLil, Pi2 =Lil  [']Li2 and Pi3 =Li2 NLi3 and obtain D ( 0 ) = ) ( ,  D ( 1 ) =  
HLij, D ( 2 ) =  I_[Pij and D(m)=  0 for m>2.  Thus, the weight spectral sequence 

wE~ m'm+k = Hk-m(D(m), Q ) ( - m )  :=~ GrWm+kHI~(X)Q 

has the table of non-vanishing entries 

wE~, o = HO(~, Q) ~ Q w E°,2 = n2(f( ,  Q) ~ Q ( -  1)1° 

l d-I,~ 

wEl 1'2 ---- H°(D(1 ), Q ) ( -  1 ) -- Q ( - 1  )12 

wE°1,4 = H4(z~, ~) ~ Q(-2) 

~ d-l ,4 

wE~ -1"4 = H2(D(1), Q ) ( -  1) ~ Q ( - 2 )  12 

d-2,4 

wE[ 2,4 = H°(D(2), Q ) ( - 2 )  ~ Q ( - 2 )  12 



204 A. Matuschke / Journal of Pure and Applied Algebra 124 (1998) 201-210 

where the maps d -m'm+k correspond to the sum of the Gysin maps associated to the 
mappings of the components of D(m) into the components of D ( m -  1). 

9 L We h a v e  d-l'2([Lij])=(Lij- F)[F]  + ~ k = a (  ij  "Ek)[Ek]EHZ(f( ,Q) and from the 
equations for Lig and Ek above we compute the matrix 

[ 1  1 1 1 ~ 1 1 1 1 l 1 1~ 
' 0  0 1 1 0 0 0 1 0 1 0 0 

1 0 0 0 1 0 0 0 1 1 0 0 

0 1 0 0 0 1 1 0 0 1 0 0 
0 0 1 0 0 I 0 0 1 0 1 0 
0 1 0 0 1 0 0 1 0 0 1 0 
1 0 0 1 0 0 1 0 0 0 1 0 

0 0 1 0 1 0 l 0 0 0 0 1 
1 0 0 0 0 1 0 1 0 0 0 1 

0 1 0 1 0 0 0 0 1 0 0 1 

for  d -1 '2 and conclude rkd-1 '2=9.  

For d -2 '4  we  have d-Z'4([P,7]) = ~,3= t(Pi j .Lik)[Li~] = [L~j]- [L~j_t] E H2(D(1), Q), 
where i E {1,p, p2,oe}, j E 77/3Z and [L~j] is the cohomology class of  a point on Lis. 
Since the order of the three lines Lij can be freely chosen, the equation for d -2 '4  is 
only fixed up to sign. However, we obtain rk d - 2 ' 4 =  8. 

For the single complex wE~ 

(wE~=H°(2 ,  Q ) ~ Q )  ° , ( w E ~ = H ° ( D ( 1 ) , Q ) ( - 1 ) ~ Q ( - I ) 1 2 )  
(d-~,:,0) 

, (wE~ = H2(X, Q) • H°(D(2), Q) ( - 2 )  ~ Q ( -  1 )ao O Q ( - 2 )  12) 
O@d-2, 4 

(wE~ = e2 (o (1  ), g}) ( -  1 ) ~ Q ( - 2 )  ix) 
d-l,4 

, (wE 4 =H4(2, ~) ~ ~ ( - 2 ) ) ~  0, 

we have Hk(wE~)= Gr~eHk(X)Q as mixed Hodge structures over Q by [3, Th6orbme 
2.3.5]. From H 4 ( X , Q ) = 0  we obtain rkd  - L 4 =  1 and, therefore, 

H°(X, Q) -- GroWH°(X)e ~- Q, 

H a (X, Q) = GrWHI(X)Q ~ Q ( - 1 )  3, 

H3(X, Q) = Gf f  H3(X)Q ~- 0(_2)3 

and 

Gr~ H2(X)Q = GrW H2(X)~ • Gr4W H2(X)~ -~ ~ ( - 1 )  • Q(--2) 4. 

As complex analytical fibration, f : X - - ~  S admits no monodromy in its relative real 
dimension and we have R 2 f . Q x  ~ Q s ( - 1  ). For any fibre Xs of X we therefore obtain 

H3 (X, Xs; Q) ~ Hi(S, {s}; RZf ,  Qx)  -~ H ~ (S, {s}; Q s ( -  1 )) 

-~ Hi(s ,  {s}; Q ) ( - 1  ) -~HI(S, Q ) ( - 1 )  ----- Q ( - 2 )  3, 
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where the first isomorphism is given by the Leray spectral sequence and the last is 

given by HI(S ,Q)~  Q ( - 1 )  ~, which can be easily checked from the weight spectral 
sequence corresponding to S ¢---, P~. 

If  we consider now the relative cohomology sequence 

• ~HI(X,C~ ) i'=0 ~, -- , H i (Xs, Q)  ~ H2(X, Xs; Q) 

62 
p2~HZ(X,Q ) i" ~ H2(Xs, Q)  ,H3(X, Xs;Q)---+... 

for X~ ~--~X as exact seqence o f  mixed Hodge structures over Q, then we see that 
62 = 0  because of  different weights. Thus, the homomorphism i2 is surjective and 
HZ(Xs)'~ 7 / ( -1 )  implies that i2 is isomorphic to a projection H2(X, Q ) ~  Gr~z~H2(X)c~ 
= WzH2(X)c~. This means that W2H2(X)~.~ is a direct summand of  H2(X)e as mixed 
Hodge structure over Q and, therefore, we obtain that H2(X)c~ = Gr~H2(X)~ @ Gr4 W 
H 2 ( X ) Q = ~ Q ( - - 1 ) @ Q ( - 2 )  4. [~ 

With the notation from the last paragraph of  the proof we also have rk p 2 =  4 and 

we obtain by 

6t z 
0 - - + H I ( A s , ~ )  ~H2(X, Xs;Q)  P , i m p 2 ~ 0  

an element tbEExt(c~mH,)(Q(--2)4,H1(XD¢~). Although it would not hurt much if 

we deal with mixed Hodge structures over Q, the following Proposition 2 implies 

that qs is already defined over 7/, i.e. as element in EXt(mH,)(7/(-2)4,HIXs). 

Lemma. He(x, 7/) is torsion free. 

Proof.  For S - P~ - { 1, p, p2, oo} , ~  S 2 - {four points}, we fix two open subsets Sl 

and $2 with $1 LJ $2 = S, Sl N $2 = $3 II $4 Ii $5 Ii  $6 and Sl . . . .  , $6 are all homeomorphic 

to the open disc B 2. We put W~=XIs ' and obtain the Mayer-Vietoris sequence 

• - . ~ H 3 X  6~ iv , HzW3@H2W4@I-I2Ws@H2W6 H2W~OH2W2 J: H2X 

6, HIW3@HIW40H1W50HIW6 ~ HIWI®HIW2 J' ~ H1X 

6o Ho W3 ® Ho W4 @~ Ho Ws ® Ho W6 ~L+ Ho W~ O Ho W2 jo HoX --4 0. 

Since Si ~ B  2 are simply connected, the maps Wi---,Si are orientable fibrations in the 

sense of  [10, Theorem 9.3.17]• Consequently, HkW~HkT for i =  1 . . . . .  6, where T 

denotes the oriented topological toms. If  6i : T ~ W, is a orientation preserving map of  
T onto one of  the fibres of  Wi, then H2Wi=7/-  [criT]. Since there is no monodromy 

for X--* S in the relative dimension, we obtain as matrix representation for i2 

1 1 1 1 

and we have coker i2, and hence, H2X torsionfree. ½ 
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In the beginning we asked, whether there is an inclusion c~:Y(-2)'--~H2X, such 
that the resulting short exact sequence 0--+H1X---~N~ ~ im ~---~0 is a non-splitting 
extension of mixed Hodge structures. This is now equivalent to the question, whether 
~/s # 0. To answer this question we gather the following facts. 

Proposition 2. For any s E X we have qs # 0 if and only if there are an element 
~o c F2H2(X, Xs)c already defined over 7/and a 2-chain Ts on X with boundary in Xs, 
such that 

Proof. For describing the general shape of an element rlEExt(mHs)(T/(-2)4,H1Xs), 
we fix for 7 / ( - - 2 )  4 a basis (tl . . . . .  t4)  and for Xs~-C/7/v + 7/ a basis (a,b) in HtX~ 
dual to the generators of the lattice. As in [13, Section 10], we have 

Ext(mH~)(7/(-2 )4,Hl Xs ) 

= Homc(2~(-2) 4, H 1 (Xs)c ) / (F°Hom(7/(-2)  4, HIx~ )c 

+ Homc(Z(-2)4,H1Xs)) 

= Homc(7/(-  2)~, Hl(X~)c)/Homc(Z(- 2) 4, H1X~) =~ C8/7/8 . 

o If ~b corresponds under this canonical isomorphism to a matrix (r/~), then we have 

WoHZ(X, Xs)Q =0,  

W1H2(X, Xs ),~ = W2H2(X, Xs )e, 

= W3H2(X, Xs)G--~Qa + @b, 

W4H2(X, Xs)Q =@a + Qb + Z @ti, 

F°H2(X, Xs)c = C a  + Cb + Z Cti, 

FIH2(X, Xs)c = C('ca + b) 

li 2i FZHZ(X, X s ) c = E  C(ti + rl s a + rls b), 

F3Hz(X, Xs)c =0  

and our claim becomes obvious. [] 

Proposition 3. F2H2(X, Xs)c is canonically isomorphic to H°0( , I22(D))  via integra- 
tion. 

Proof. For obtaining the concrete Hodge filtration on H2(X, Xs), we consider the rela- 
tive log-complex (cf. [7, p. 449]) given by f2x(log(D+Xs))(-X~)= ker(f2x(logD) 
Q. x~). Associated to the short exact sequence of complexes 

0 --~ gx(log(D + X~))(-X~)--~ O x ( l o g D ) ~  g'x, --~ 0 
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we have the commutative diagram 

0 0 0 

1 1 1 
C2(_Xa ) a f2}.(log(D +Xs))(-Xs) ~ t~2(D) 

l l l 
C2 a , O~-(logD) a , O}(D) 

l 1 I 
Cx, a ~ g21x, a ~ 0 
,t .L 
0 0 

with zero lines and exact columns. 
We have a canonical isomorphism Hk(X, Xs; C ) =  Hk(X, I2}(log(D+Xs))(-Xs)). For 

any complex K ° we denote with a>_,K ° the obvious (sometimes also called stupid) 
filtration of K °, i.e. a>_pKi=K i for i > p  and a>_pKi=O for i<p. In general, the 
Hodge filtration on the cohomology groups of a smooth algebraic variety is induced 
by the obvious filtration of the log-complex associated to a suitably chosen comple- 
tion (cf. [3, Section 3]). In our relative situation we obtain FPH2(X, XJc as image 
of H2(.~, a>pf2x(log(D + Xs))(-Xs)) in H2(X, f2x(log(D + Xs))(-Xs)) analogously 
as in the proof of [4, Proposition 8.3.9]. To determine this image we consider the 
spectral sequences of hypercohomology EP'q ~ []~P+q(x, ~2x(log(D + X,.))(-Xs)) and 
E p'q ~ H P+q(fr, 12 x(log D)) with the corresponding tables of non-vanishing entries 

~1 '0 
H°(X, (S£(-Xs)) ~ H°(X, O~-(log(D + Xs))(-Xs)) d;'°, 

H I ( k , C ~ ( - X D )  d'°'> H~(k,  0}(log(D +Xs))(-X~)) 

H2(.C,(£k(_Xj)  d°':, H2(R,O~c(log(D+Xj)(_X~)) d,"2~ 

dl,°~ Ho(~, Y22x-(D)), 

d~" HI(f(,y22(D)), 

dl ''2) H2(X, f22(D)) 

and 

ao, o 
H°O ~, C£(-Xs))  > 

d o, I 

Hi(X, C¢(-Xs)) , 
d o, 2 

H2()( , 6.~:,?(-Xs)) 

H°(X, ~l(log D)) 

H 1 (z~, Q~(log D)) 

H2(..~, ~Ql(log D)) 

d:°, H ° 0  ~, K2~-(D)), 

d~" H1 (X, K22(D)), 

d~'2, H2(X, f2~?(D)). 

By [3, Th6or~me 3.2.5] we know that E:'" degenerates at E~ '°, i.e. d p , ' = 0  for 
p >_ 1. Actually also /~ '°  degenerates at E~'°, which can be seen, for instance, by 
verifying that the proof for [3, Th6or6me 3.2.5] also applies in the relative situation 
as described in [4, Section 6.3]. Another way to see this degeneration in our concrete 
situation is to notice that for K = -3 [F ]  + [El] + - "  + [Eg] the class of the canonical 
divisor on X, we have [Xs] = - K  and [D] = - 4 K  in Pick and then apply Hirzebruch- 
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Riemann-Roch, Serre duality and our preknowledge about the ranks of H'(X,X~; C). 
But we are only interested in 

F2H2(X, Xs)c = im(E20  ~, ~_>2Qx(log(D + Xs)) ( -XD)  

--+ H2(X, f2x(log(D + X,)) ( -Xs)) )  

2 - 2 . - 1 , 0  
= H  (X, f22(D))/(1md 1 ). 

and the commutative diagram 

dl I,° 
H°(2 , ~ - ( l og (D  + XD)( -X, ) )  , H°(2,12~-(D)) 

1 l = 
HO0~, Q~(logD)) @ °=° , Y °0(, K2~(D)) 

and the injectivity of the left downarrow tells us that imd~ '° = 0  and, thus, we have 

F2H2(X, Xs)c = H° (2 ,  f~x2- (D)). 

Proposition 4. Let xl, Yl, cq be the coordinates on U1 as in the beginning o f  this 
paper and ~, =dx l / (3y  2 - 3 : q x i )  a global holomorphic differential on the elliptic 
curve X~,. Then 

1 
COvc = 4 r c 2  • (~ ,  A dcq 

is an element in H°(X,  E2~-(D ) ) = FZHZ(X, Xs )c already defined over ]_. 

Proof. Since G r ~ H 2 ( X ) Q ® C  = F2H2tX)c  = H°(X,  f22(O)) we have rkH°(X,  
/22(D))=4 and we can choose a basis ( ¢ - O l , g 0 p , ( O p 2 , ( . 0 ~ c ) ,  such that ooi has positive 
pole order exactly at the three components of X,. = Lil U Li2 {5 Li3. Precisely, if l~j are 
the homogeneous equations for the Lij, then I,j = I,g/li3 are rational functions on )~ and 
we put 

1 dlil A dli2 
('Oi ~ ~ 2  " lil li2 

The factor 1/47z 2 is necessary to make sure, that the coi are already defined over 2~, 
i.e. if T is some 2-cycle on X, then 

= f c o i  ~ ~. ~oi(T) 

In particular, we have 

1 dxl A dyl 

~zc = 4./~ 2 x122 
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From the equation 

x~ + y~ + 1 - 3elxlyl = 0 ,  

we obtain 

(3x~ - 3~ ly l )dx l  + (3y~ - 3cqxl)dyl  - 3xlyldel  = 0  

_ _  ( 3xl),'ldel ( 3 x f - 3 e l y l ) d x l )  
dxl A \ 3~212----~1x 1 gy-{~3cq---xl" 

xl Yl 

1 dxl 
A d ~ .  [] 

4rt 2 3y~ - 3cqxl 

and hence 

1 
O ) o c  = 4 r t 2  • 

Now, we are ready to formulate our main result: 

Theorem. For a general fibre Xs of the Hessian family X, the mixed Hodge structure 
on the cohomology group H2(X, Xs) is a non-splitting extension of  7/(--2) 4 by HI(Xs). 

Proof.  We are looking for an s ¢ S, where our r/s C Ext(mn,)(~-(-2)4,H1Xs) does not 

vanish. By Propositions 2 - 4  it is sufficient to find a 2-chain T in X, such that ~T is 

a 1-cycle in some fibre X~ and 

Let s E S be arbitrarily fixed. With G the global holomorphic differential on X, as 

defined in Proposition 4 we can choose an 1-cycle Cs on X~, such that 

Since Hi(X, 7/) ~ H I(xs, Z) is the zero map, also H1 (As, 7/) --~ H1 (X, Z) is of  rank zero. 

Thus, there exist a 2-chain Ts on X and an integer q > 0 ,  such that OT~ is homologous 

to qC~. Since homologous 1-cycles on Xs are homotopic, we may assume that ~Ts = qCs. 
Now, we fix a smooth path 7 : [0, 1] ~ S with 7(0) = s and vary Cs along this path. 

Due to this variation we obtain for every t c [0, 1] a 2-chain Qt on X with 8Q~ = G - C t ,  
where Ct is some 1-cycle on X~(t). By Tt = Ts - qQt we obtain a 2-chain on X with 
~Tt = qCt. I f  we can show, that the continuous function [0, 1] ~ C given by 

t ~ fT. (Ooo 

has not only integer values, then we are done. But for this it is enough to show that 

the continuous function 

f ( t )  = f cos 
• 1 ~ .  t 

is not constantly zero for t E [0, 1]. 
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By the Theorem o f  Fubini  we  have 

f(t)= ~ ~, d~, 

where  ~'t is the path g iven  by 71{o,@ Since 

c ~s¢0,  

there exists an c > O ,  such that for all t E (O,c)  we have  

which  yields the desired result. W e  easi ly see that our  s ta tement  holds  for general  

fibres. ~ 
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