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Abstract

We show that for a general fibre X; of the Hessian family X of elliptic curves the mixed
Hodge structure on the cohomology group H>(X,X;) is a non-splitting extension of Z(—2)* by
H'(X,). © 1998 Elsevier Science B.V.

1991 Math. Subj. Class.: 14C30, 14D07, S7R19

This paper is the object of the author’s rest problem within the courses of the
Master Class 1994/1995 at the Mathematical Research Institute in the Netherlands.
This problem was given to me and supervised by J. Steenbrink from the Katholicke
Universiteit Nijmegen. As I understood, the question arose to him after being confronted
with a lecture of C. Deninger concerning the relation between extensions of mixed
motives and higher K-groups.

We choose homogeneous coordinates (x:y:z) on PZ and («: ) on P! and consider
the projective complex surface

X ={px*+ By’ + B> — 3axyz =0} C P& x P

together with the flat morphism X —P{ induced by the second projection. We have
X as blowing up of Pé in 9 points due to the first projection, precisely as blowing
up with centre in V,(x* + y> + z3,xyz). We think of C as embedded into P} by
identifying 4 € C with the point (4:1)€ P.(C) and we will denote the point (1:0)
with oc. For s € P} we denote with X; the fibre of 1 over s. If p is the third root of
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Table 1
Subset in P? x P! Coordinates/equations
Ur={8#0,z#0} X1 =x/z, y1 = y/z, 01 = /B
A :xE +y13 +1-=-3ax1 1
g1 =ozl3 -1
Up={B#0,y#0} X=Xy, ya=z/y, 0a =/
fi :xg +y23 +1—=3mxy
5] :ag ~1
Uy={a#0,x —z#0} x3=x/(x ~z), y3=y/{(x —z), 03 = P2
5 :2(13)633 — 3<:z3x32 + 3a3x3 — a3 — 3x32y3 + 3x3¥3
g3 =<1§' — X3
Us={a#0,x — y#0} x4 =x/(x — y), ya=z/(x — y), 24 = Bja

ﬁ = 2a4x3 -— 3a4x‘f + 3&4X4 —~ 04 — 3&%)’4 + 3x4y4
ga=oly — a4

unity (—1++/=3)/2, then X), X,, X,z and X, are the singular fibres of £, each of them
isomorph to three lines crossing in three different points. For § = [P’é — {1, p,p?% 00},
D=X1UX,UX,UXx, X=X -D and f:f_lX, we have f:X —S§ as a smooth
projective family of elliptic curves, known as Hessian family. This family admits an
interpretation as universal family of elliptic curves with weak level-3 structure. The
various statements in this second paragraph can be checked easily from an open affine
covering X =(J ¥ given by the Table 1 with ¥ =¥ (f;)C U;=SpecClx;, y;,%;] and
with DN¥,=V(g,)C V.

If we consider for an arbitrary point s €S the embedding X; — X, then the long
exact sequence of relative cohomology groups

o H'(X) = B () = HAXX,) — HA(X) — HA(X) = -

is an exact sequence of the associated mixed Hodge structures by [4, 8.3.9]. For any
inclusion a: Z(—2) < H*(X) the image of im « in H2(X,) vanishes, as the weights are
different. Since X is rational, we have H'(X)=0 and since W H'(X )g =im(H'(X,Q)
— H'(X,Q)), we conclude that the weights occurring in H'(X) are greater than 1.
Therefore, H'(X)— H'(X,) is the zero map and if we let N, denote the inverse image
of ima in H?(X,X;), then we obtain by the short exact sequence

0 HYX,)— Ny —ima—0

an element 7, € Extimp,(H'(X;), Z(—2)). The question is, if #, is non-trivial and what
is the geometric meaning of these extensions. A first step on this way is

Proposition 1. For the mixed Q-Hodge structures on the non-vanishing rational coho-
mology groups of X we have isomorphisms H*(X)q = Q, H'(X)g = Q(-1)’, H*(X)o
~Q(~=1)®Q(-2)* and H3 (X )g = Q(-2)>.
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Proof. We are to use the weight spectral sequence with respect to the compactification
X < X as in [3, Théoréme 2.3.5]. For that we recall that H(X)=Z, HYX)=17Z(-2),
H\(X)=H3X)=0 and HXX)=12(-1)"°, where as generators for H*(X) we can
choose the cohomology classes of F,Ei,...,Ey with F a general line on X, i.e. coming
from P2 and Ej, ..., Eg the exceptional lines of the blowing up X — PZ. Every line E;
corresponds to the blowing up of P2 in a point e; and for later computations we fix

er=(0:—1:1), e=(-1:0:1), er=(—1:1:0),

e=(0:—p:1), es=(—p:0:1), eg=(—p:1:0),

e3=(0:—p?:1), es=(—p2:0:1), eg=(—p?:1:0).
Let D(m) be the normalisation of all m-fold intersections of components of D. For
ic{1,p,p? oc} we have X; =Ly ULy ULy with Lj; = P. due to the equations

Ly=Vo(a— (1= pH)x + (p— Dy +(p* = p)2),

Ly =Vi(p?a—f,(p* = p)x +(p— D)y +(p = 12),

Ly =Vi(a— B, (1= p)x + (p* = 1)y +(p = p)2),

Ly =Vi(p*z—B,(p*— Dx+ (p* = Dy + (1= p)2),

L =Va(a—B(p— pP)x+(p=pP)y + (p—p")2),

Lys=Vi(p’a—B.(p~ Dx + (0" = p)y +(p = 1)2),

Ly = Vilpa— Bo(p = Dx + (p = Dy + (1= p*)2), Lot = Vi (B, %),

Ly =Vilpa— . (p—pHx + (0> = Dy +(p*=12), Lo =Va(B),

Lyy = Vi(pa— B.(1 = pP)x + (9> —p)y + (1= pM)2)s  Losa =Vi(h:2).
We put By =LaNLy, Po=1La MLy and P3=LpNL;s and obtain D(O):A_’, D(1)=
1Ly, D@2)= 11 P; and D(m)=0 for m>2. Thus, the weight spectral sequence

WET ™R = HEm(D(m), @) (=m) = Gryl H (X)a
has the table of non-vanishing entries

M =H'X,Q)=Q LEY=H'X Q)= Q(=1)°

o
WETU = HYD(), Q) (-2 Q-1

WJES = HA(X, Q)= Q(-2)
I
JETP = HY(D(1),Q)(-1) = Q(-2)"
iy
JETP = HY(D(2),Q)(-2) = Q(-2)"
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where the maps d ™™ correspond to the sum of the Gysin maps associated to the
mappings of the components of D(m) into the components of D(m — 1).

We have d~"2([L;]) = (L - F)IF] + X, _ (L - E)[Ex] € H*(X,Q) and from the
equations for L;; and E; above we compute the matrix

r1 1+ 1 1 1 1 1 1 1 1 1
60 1 1 0 0 O 1 0 1 0 O
1 0 0 0 1 0 O O 1 1 0 O
61 0 0 0 1 1 0 0 1 0 O
060 1 0 0 1 6 0 1 0 1 O
61 0 0 1 0 O I 0 o0 1 O
Il o ¢ 1 060 0 1 0 0 o0 1 O
60 1 0 1 0 1 0 0 O 0 1
1 06 0 0 6 1 0 1 0 O O 1
61 6 1 0 O O O 1 0 0 1

for =12 and conclude rkd—1?=9.

For d=2* we have d~24([P,]) = ¥ _\(Py-La)[Ly] = L]~ [L}_,] € HX(D(1), Q),
where i € {1,p, p? 00}, j € Z/3Z and [L;] is the cohomology class of a point on L.
Since the order of the three lines L;; can be freely chosen, the equation for d=>* is
only fixed up to sign. However, we obtain rk d 2% =38.

For the single complex ,E}

(wES = H'(X, @) 2 Q) 5 (,E] = HAD(1), @) (- = Q(~1)"?)
o jo) WE}=H*(X,Q)8 H(D(2),Q)(-2)=Q(-1)* & Q(-2)"?)
L (B = HAD(1),Q)(~1) 2 Q(-2)")

— s (WEf=H'X,Q)=Q(-2))—0,

we have H*(,E?)=Gr¥ H*(X)q as mixed Hodge structures over Q by [3, Théoréme
2.3.5]. From H*(X,Q)=0 we obtain rkd~"*=1 and, therefore,

H'X,Q)=GrfH' X))o =Q,
H'(X,Q)=Gry H'(X)a = Q(-1)’,
H(X,Q)=Gry H¥ (X )o = Q(-2)?
and
GrPH (X))o =GrV H* (X))o & Grif H* (X ) = Q(-1)® Q(-2)*.

As complex analytical fibration, f:X — S admits no monodromy in its relative real
dimension and we have R? fxQy = Qg(—1). For any fibre X; of X we therefore obtain

HY (X, X; Q)= H'(S, {s}; R? fxQx) = H' (S, {s}; Qs(—1))
= HY(S, {s}; Q-1 = H'(S,Q)(-1)=Q(-2)°,



A. Matuschke ! Journal of Pure and Applied Algebra 124 {1998) 201-210 205

where the first isomorphism is given by the Leray spectral sequence and the last is
given by H'(S,@)= Q(-1)3, which can be easily checked from the weight spectral
sequence corresponding to S — Pl

If we consider now the relative cohomology sequence

i'=0

e HY(X, Q) H‘(Xs,@)—‘sl—»HZ(z\’,Xs;Q)

N

—’iHZ(/\’,@)-‘—»HZ’-(,\’S,@)‘5_2.H3(X’XS;@)_,...

for X;— X as exact segence of mixed Hodge structures over (@, then we see that
02=0 because of different weights. Thus, the homomorphism i, is surjective and
H?(X;)=Z(—1) implies that i, is isomorphic to a projection H*(X, Q) — Gr¥ H>(X)q
= W,yH?*(X)g. This means that W,H?(X )g is a direct summand of H2(X )g as mixed
Hodge structure over Q and, therefore, we obtain that H%(X )g = Gr¥ H*(X)g ® Gr}
HY(X)g=Q(-HaQ(-2)* O

With the notation from the last paragraph of the proof we also have vk p* =4 and
we obtain by

<1 2
0— H'(X,, Q) - HA(X, X;; Q) 25 im p? — 0

an element 17, € Extigma,)(Q(—2)*, H'(X;)g). Although it would not hurt much if
we deal with mixed Hodge structures over (, the following Proposition 2 implies
that 7, is already defined over Z, i.e. as element in Ext(muy(Z(—2)*, H'X;).

Lemma. H%(X,7) is torsion free.

Proof. For S=P. — {1,p,p% 00} =8? — { four points}, we fix two open subsets S,
and S5 with S, US, =S8, SiNS; =808, 115:11S¢ and S,,..., S are all homeomorphic
to the open disc B?. We put W, =X|s, and obtain the Mayer-Vietoris sequence

i HW X 2 Ho W @ oW @ HoWs & HoWe —2o HoW\ & HoWy 2 HoX
IR HWsoHWs S H\Ws o H W LN H\Wy & HiW, TN H\X
o HoWs ® HoWs @ HyWs @ HoWe — HyWy © HoWy 25 HoX — 0.

Since S;~ B* are simply connected, the maps W, — §; are orientable fibrations in the
sense of [10, Theorem 9.3.17]. Consequently, H; W, = H, T for i=1,...,6, where T
denotes the oriented topological torus. If a;: T < W, is a orientation preserving map of
T onto one of the fibres of W, then H,W; =7 - [0;T]. Since there is no monodromy
for X — S in the relative dimension, we obtain as matrix representation for i,

11 1 1
1 1 1 1

and we have cokeri,, and hence, H2X torsionfree. [
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In the beginning we asked, whether there is an inclusion «:Z(—2)— H?X, such
that the resulting short exact sequence 0 — H'X — N, —ima— 0 is a non-splitting
extension of mixed Hodge structures. This is now equivalent to the question, whether
ns 7 0. To answer this question we gather the following facts,

Proposition 2. For any s€ X we have n,#0 if and only if there are an element
w € F?H*(X,X,)c already defined over 7 and a 2-chain T; on X with boundary in X;,
such that

/ T,¢7.

Proof. For describing the general shape of an element 5 € Extimm,(Z(—2)* H'X,),
we fix for Z(—2)* a basis (#,...,1) and for X, = C/Zt + Z a basis (a,b) in H'X;
dual to the generators of the lattice. As in [13, Section 10], we have
Ext(mity(Z(~2)", H' X))
= Homc(Z(=2)2, H' (X;)e)/(F Hom(Z(~2)*, H' X, )c
+ Home(Z(—2)*, H'X;))

=Homg(Z(—2)¢, H' (X, )c )/Home(Z(—2)*, H' X;) = C%/Z°.

If s corresponds under this canonical isomorphism to a matrix (77), then we have

WoH* (X, X,)a =0, FHY(X,X)e=Ca+Cb+ ) Cu,
W H(X, X)a = WoH (X, X )q, F'H*(X,X;)c =C(ta + b)
=W3H*(X,X,)o=0Qa + Qb, +Y Clt+ny'a+12'b),

FPHX (X, X,)c=Y _ C(t; + n;'a + n2'b),
WaH (X, X)a=Qa+Qb+» Qt,  FHXX)c=0
and our claim becomes obvious. [

Proposition 3. F2H(X,X,)c is canonically isomorphic to H(X,Q%(D)) via integra-
tion.

Proof. For obtaining the concrete Hodge filtration on H2(X, X;), we consider the rela-

tive log-complex (cf. [7, p. 449]) given by Q%(log(D +X))(—X;) =ker(Q%(log D) —
Q% ). Associated to the short exact sequence of complexes
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we have the commutative diagram

0 0 0
1 l I
O7(~X) - Ql(log(D +X)(—X;) - QD)

0y ———— Ql(log D) —L— Q}(D)

| !

@Xx d AQ}I d > 0
1 1
0 0

with zero lines and exact columns.

We have a canonical isomorphism H*(X, X;; C) = H¥(X, 2% (log(D+X;))(—X;)). For
any complex K*® we denote with 65,K* the obvious (sometimes also called stupid)
filiration of K*, i.e. o5,K' =K' for i> p and o5 ,K'=0 for i<p. In general, the
Hodge filtration on the cohomology groups of a smooth algebraic variety is induced
by the obvious filtration of the log-complex associated to a suitably chosen comple-
tion (cf. [3, Section 3]). In our relative situation we obtain FPH*(X,X;)c as image
of H2(X, o> 2% (log(D + X)) (—X;)) in H3(X, Q% % (log(D + X)) (—X;)) analogously
as in the proof of [4, Proposition 8.3.9]. To determlne this image we consider the
spectral sequences of hypercohomology EV? = HrHI(X, Q% (log(D + X;))(—X,)) and
EP? = HPH(X,Q%(log D)) with the corresponding tables of non-vanishing entries

HX, ch(—X)) a4, HO(X Q5 (log(D +X))(——X)) HO(X Q%(D)),
H'(X,03(—X,)) iy 74 (X, 25 (log(D + X)) (—X,)) LIy 7¢ (X, Q%(D)),

70,2 712

- d - d —
HAR, 05(—=X,)) 2 HAX, Q4 (log(D + X))(—X,) " HX(X,Q3(D))
and
- d0,0 _ dI.O -
HOR, C5(~Xy)) 25 H°(X L (log D)) o H°(X QL(D)),
HI(R, G o(~X)) 2 H'(X, Q4 (log D)) 2 H'(X, QX(D)).
HAR, O(—X5)) o HA(E, Q(log D)) s HA(X, 9}(0)).

By [3, Théoréme 3.2.5] we know that EJ* degenerates at £, ie. dy*=0 for
p > 1. Actually also E%* degenerates at EY 7**, which can be seen, for 1nstance by
verifying that the proof for [3, Théoréme 3.2.5] also applies in the relative situation
as described in [4, Section 6.3]. Another way to see this degeneration in our concrete
situation is to notice that for K = —3[F]+ [E1] + - - - + [Es] the class of the canonical
divisor on X, we have [X;]=—K and [D]= —4K in PicX and then apply Hirzebruch-
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Riemann-Roch, Serre duality and our preknowledge about the ranks of H*(X,X;;C).
But we are only interested in

FPH* (X, X,)c = im(H*(X, 05,Q%(log(D + X,)) (—X,))
— H*(X, Q% (log(D + X)) (—X;)))
= H(X,04(D))/(imd;")
and the commutative diagram

d‘l.U

HY(X, 2b(log(D + X,))(=X;)) ——— H(X, 2%(D))

1 R

L0

0/ v 1 4, 0/ v 2
HYX,2;(log D)) H'(X,Q3(D))

and the injectivity of the left downarrow tells us that im ‘;,11,0 =0 and, thus, we have
FPHX (X X)c =H(X,Qk(D)). O

Proposition 4. Let x\, yy,a; be the coordinates on U, as in the beginning of this
paper and {,, =dx1/(3y} — 3uyx1) a global holomorphic differential on the elliptic
curve Xy,. Then

1

Wop = —=
4x?

: ga(] A dd]
is an element in H(X,Q3(D))=F*H*X,X;)c already defined over Z.

Proof. Since GriH*(X)o®C = F*H*(X)¢ = H%X,Q%(D)) we have rk H(X,
Q%(D)):4 and we can choose a basis (W, w,, w,2, W), such that w; has positive
pole order exactly at the three components of X; =L; UL;ULj. Precisely, if llfj are
the homogeneous equations for the L;;, then /;; = /;/I; are rational functions on X and
we put

o = 1 digadl

T 4‘!172 l,—] liz ’

The factor 1/4n? is necessary to make sure, that the ; are already defined over Z,
ie. if T is some 2-cycle on X, then

a),-(T):/ w el
T

In particular, we have

1 dx; Ady

(93} =
7 4n? X1y
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From the equation
x4y + 1= 3001 =0,
we obtain
(3xf = 3my1)dxy + Byf = 3mx)dy) — 3xyiday =0

and hence

Woo

dX1 A ( 3X1y1dd1 (3x12 b 3d1y1)dX1>

T X1 3yt = 3ux - 3y? = 3oyx

1 dx1
= . O
4n? 3y? —3ax %

Now, we are ready to formulate our main result:

Theorem. For a general fibre X of the Hessian family X, the mixed Hodge structure
on the cohomology group H*(X,Xy) is a non-splitting extension of Z(—2)* by H'(X,).

Proof. We are looking for an s € S, where our 7 eExt(me)(Z(—Z)“,H 1X,) does not
vanish. By Propositions 2—4 it is sufficient to find a 2-chain T in X, such that ¢7T is
a l-cycle in some fibre X; and

/Twoogzl.

Let s €S be arbitrarily fixed. With {; the global holomorphic differential on X; as
defined in Proposition 4 we can choose an 1-cycle C; on X, such that

{0,
Cs

Since H'(X,Z) — H'(X,,Z) is the zero map, also H(X;,Z) — H(X,Z) is of rank zero.
Thus, there exist a 2-chain Ty on X and an integer ¢ >0, such that 07 is homologous
to gC;. Since homologous 1-cycles on X; are homotopic, we may assume that 07 = gC;.

Now, we fix a smooth path y:[0,1] — S with y(0)=ys and vary C; along this path.
Due to this variation we obtain for every ¢ € {0, 1] a 2-chain @, on X with 6Q, =C;—C,,
where C, is some l-cycle on Xyy). By T; =T, — ¢Q; we obtain a 2-chain on X with
8T, = qC,. If we can show, that the continuous function {0,1]— C given by

t— Woo
T

has not only integer values, then we are done. But for this it is enough to show that
the continuous function

f(t)=/lcuoo

is not constantly zero for ¢ € {0, 1].
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By the Theorem of Fubini we have

i
f(t)_W/./ /Ql (x| day,

i

where y, is the path given by yp,,). Since

/ £, 0,
C

there exists an >0, such that for all r € (0,¢) we have

/ / ':1] dal # 05
7 qu

which yields the desired result. We easily see that our statement holds for general
fibres. [
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