

Journal of Pure and Applied Algebra 124 (1998) 201-210

JOURNAL OF PURE AND APPLIED ALGEBRA

A geometric example of non-trivially mixed Hodge structures

Andreas Matuschke*

Institut für Mathematik, Humboldt-Universität zu Berlin, Raum 303, Ziegelstr. 13a, D-10099 Berlin, Germany

Communicated by F. Oort; received 20 June 1995; received in revised form 31 July 1995

Abstract

We show that for a general fibre X_s of the Hessian family X of elliptic curves the mixed Hodge structure on the cohomology group $H^2(X, X_s)$ is a non-splitting extension of $\mathbb{Z}(-2)^4$ by $H^1(X_s)$. © 1998 Elsevier Science B.V.

1991 Math. Subj. Class.: 14C30, 14D07, 57R19

This paper is the object of the author's *test problem* within the courses of the Master Class 1994/1995 at the Mathematical Research Institute in the Netherlands. This problem was given to me and supervised by J. Steenbrink from the Katholieke Universiteit Nijmegen. As I understood, the question arose to him after being confronted with a lecture of C. Deninger concerning the relation between extensions of mixed motives and higher K-groups.

We choose homogeneous coordinates (x : y : z) on $\mathbb{P}^2_{\mathbb{C}}$ and $(\alpha : \beta)$ on $\mathbb{P}^1_{\mathbb{C}}$ and consider the projective complex surface

$$\bar{X} = \{\beta x^3 + \beta y^3 + \beta z^3 - 3\alpha x yz = 0\} \subset \mathbb{P}^2_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$$

together with the flat morphism $\overline{f}: \overline{X} \to \mathbb{P}^1_{\mathbb{C}}$ induced by the second projection. We have \overline{X} as blowing up of $\mathbb{P}^2_{\mathbb{C}}$ in 9 points due to the first projection, precisely as blowing up with centre in $V_+(x^3 + y^3 + z^3, xyz)$. We think of \mathbb{C} as embedded into $\mathbb{P}^1_{\mathbb{C}}$ by identifying $\lambda \in \mathbb{C}$ with the point $(\lambda:1) \in \mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$ and we will denote the point (1:0) with ∞ . For $s \in \mathbb{P}^1_{\mathbb{C}}$ we denote with X_s the fibre of \overline{f} over s. If ρ is the third root of

^{*} Tel.: 49 30 2093 1440; fax: 49 30 2093 1866; e-mail: matuschk@mathematik.hu-berlin.de.

Subset in $\mathbb{P}^2 \times \mathbb{P}^1$	Coordinates/equations
$U_1 = \{\beta \neq 0, z \neq 0\}$	$x_1 = x/z, y_1 = y/z, \alpha_1 = \alpha/\beta$
	$f_1 = x_1^3 + y_1^3 + 1 - 3\alpha_1 x_1 y_1$
	$g_1 = \alpha_1^3 - 1$
$U_2 = \{\beta \neq 0, y \neq 0\}$	$x_2 = x/y, y_2 = z/y, \alpha_2 = \alpha/\beta$
	$f_1 = x_2^3 + y_2^3 + 1 - 3\alpha_2 x_2 y_2$
	$g_1 = \alpha_2^3 - 1$
$U_3 = \{ \alpha \neq 0, x - z \neq 0 \}$	$x_3 = x/(x-z), y_3 = y/(x-z), \alpha_3 = \beta/\alpha$
	$f_3 = 2\alpha_3 x_3^3 - 3\alpha_3 x_3^2 + 3\alpha_3 x_3 - \alpha_3 - 3x_3^2 y_3 + 3x_3 y_3$
	$g_3 = \alpha_3^4 - \alpha_3$
$U_4 = \{ \alpha \neq 0, x - y \neq 0 \}$	$x_4 = x/(x - y), y_4 = z/(x - y), \alpha_4 = \beta/\alpha$
	$f_4 = 2\alpha_4 x_4^3 - 3\alpha_4 x_4^2 + 3\alpha_4 x_4 - \alpha_4 - 3x_4^2 y_4 + 3x_4 y_4$
	$g_4 = lpha_4^4 - lpha_4$

Table 1

unity $(-1+\sqrt{-3})/2$, then X_1, X_ρ, X_{ρ^2} and X_∞ are the singular fibres of \overline{f} , each of them isomorph to three lines crossing in three different points. For $S = \mathbb{P}^1_{\mathbb{C}} - \{1, \rho, \rho^2, \infty\}$, $D = X_1 \cup X_\rho \cup X_{\rho^2} \cup X_\infty, X = \overline{X} - D$ and $f = \overline{f}|_X$, we have $f: X \to S$ as a smooth projective family of elliptic curves, known as Hessian family. This family admits an interpretation as universal family of elliptic curves with weak level-3 structure. The various statements in this second paragraph can be checked easily from an open affine covering $\overline{X} = \bigcup V_i$ given by the Table 1 with $V_i = V(f_i) \subset U_i = \operatorname{Spec}\mathbb{C}[x_i, y_i, \alpha_i]$ and with $D \cap V_i = V(g_i) \subset V_i$.

If we consider for an arbitrary point $s \in S$ the embedding $X_s \hookrightarrow X$, then the long exact sequence of relative cohomology groups

$$\cdots \to H^1(X) \to H^1(X_s) \to H^2(X, X_s) \to H^2(X) \to H^2(X_s) \to \cdots$$

is an exact sequence of the associated mixed Hodge structures by [4, 8.3.9]. For any inclusion $\alpha : \mathbb{Z}(-2) \hookrightarrow H^2(X)$ the image of im α in $H^2(X_s)$ vanishes, as the weights are different. Since \bar{X} is rational, we have $H^1(\bar{X}) = 0$ and since $W_1H^1(X)_{\mathbb{Q}} = \operatorname{im}(H^1(\bar{X}, \mathbb{Q}))$ $\to H^1(X, \mathbb{Q}))$, we conclude that the weights occurring in $H^1(X)$ are greater than 1. Therefore, $H^1(X) \to H^1(X_s)$ is the zero map and if we let N_{α} denote the inverse image of im α in $H^2(X, X_s)$, then we obtain by the short exact sequence

 $0 \to H^1(X_s) \to N_{\alpha} \to \operatorname{im} \alpha \to 0$

an element $\eta_{\alpha} \in \operatorname{Ext}_{(mH_s)}(H^1(X_s), \mathbb{Z}(-2))$. The question is, if η_{α} is non-trivial and what is the geometric meaning of these extensions. A first step on this way is

Proposition 1. For the mixed Q-Hodge structures on the non-vanishing rational cohomology groups of X we have isomorphisms $H^0(X)_Q \cong Q$, $H^1(X)_Q \cong Q(-1)^3$, $H^2(X)_Q \cong Q(-1) \oplus Q(-2)^4$ and $H^3(X)_Q \cong Q(-2)^3$.

Proof. We are to use the weight spectral sequence with respect to the compactification $X \hookrightarrow \overline{X}$ as in [3, Théorème 2.3.5]. For that we recall that $H^0(\overline{X}) = \mathbb{Z}$, $H^4(\overline{X}) = \mathbb{Z}(-2)$, $H^1(\overline{X}) = H^3(\overline{X}) = 0$ and $H^2(\overline{X}) = \mathbb{Z}(-1)^{10}$, where as generators for $H^2(\overline{X})$ we can choose the cohomology classes of F, E_1, \ldots, E_9 with F a general line on \overline{X} , i.e. coming from $\mathbb{P}^2_{\mathbb{C}}$ and E_1, \ldots, E_9 the exceptional lines of the blowing up $\overline{X} \to \mathbb{P}^2_{\mathbb{C}}$. Every line E_i corresponds to the blowing up of $\mathbb{P}^2_{\mathbb{C}}$ in a point e_i and for later computations we fix

$$e_{1} = (0:-1:1), \quad e_{4} = (-1:0:1), \quad e_{7} = (-1:1:0),$$

$$e_{2} = (0:-\rho:1), \quad e_{5} = (-\rho:0:1), \quad e_{8} = (-\rho:1:0),$$

$$e_{3} = (0:-\rho^{2}:1), \quad e_{6} = (-\rho^{2}:0:1), \quad e_{9} = (-\rho^{2}:1:0).$$

Let D(m) be the normalisation of all *m*-fold intersections of components of *D*. For $i \in \{1, \rho, \rho^2, \infty\}$ we have $X_i = L_{i1} \cup L_{i2} \cup L_{i3}$ with $L_{ij} \cong \mathbb{P}^1_{\mathbb{C}}$ due to the equations

$$\begin{split} &L_{11} = V_{+}(\alpha - \beta, (1 - \rho^{2})x + (\rho - 1)y + (\rho^{2} - \rho)z), \\ &L_{\rho 1} = V_{+}(\rho^{2}\alpha - \beta, (\rho^{2} - \rho)x + (\rho - 1)y + (\rho - 1)z), \\ &L_{12} = V_{+}(\alpha - \beta, (1 - \rho)x + (\rho^{2} - 1)y + (\rho - \rho^{2})z), \\ &L_{\rho 2} = V_{+}(\rho^{2}\alpha - \beta, (\rho^{2} - 1)x + (\rho^{2} - 1)y + (1 - \rho)z), \\ &L_{13} = V_{+}(\alpha - \beta, (\rho - \rho^{2})x + (\rho - \rho^{2})y + (\rho - \rho^{2})z), \\ &L_{\rho 3} = V_{+}(\rho^{2}\alpha - \beta, (\rho - 1)x + (\rho^{2} - \rho)y + (\rho - 1)z), \\ &L_{\rho^{2} 1} = V_{+}(\rho\alpha - \beta, (\rho - \rho^{2})x + (\rho^{2} - 1)y + (1 - \rho^{2})z), \\ &L_{\rho^{2} 2} = V_{+}(\rho\alpha - \beta, (\rho - \rho^{2})x + (\rho^{2} - 1)y + (\rho^{2} - 1)z), \\ &L_{\rho^{2} 3} = V_{+}(\rho\alpha - \beta, (1 - \rho^{2})x + (\rho^{2} - \rho)y + (1 - \rho^{2})z), \\ &L_{\infty 3} = V_{+}(\beta, z). \end{split}$$

We put $P_{i1} = L_{i3} \cap L_{i1}$, $P_{i2} = L_{i1} \cap L_{i2}$ and $P_{i3} = L_{i2} \cap L_{i3}$ and obtain $D(0) = \overline{X}$, $D(1) = \prod L_{ij}$, $D(2) = \prod P_{ij}$ and $D(m) = \emptyset$ for m > 2. Thus, the weight spectral sequence

$$_{w}E_{1}^{-m,m+k} = H^{k-m}(D(m),\mathbb{Q})(-m) \Rightarrow Gr_{m+k}^{W}H^{k}(X)_{\mathbb{Q}}$$

has the table of non-vanishing entries

$${}_{w}E_{1}^{0,0} = H^{0}(\bar{X}, \mathbb{Q}) \cong \mathbb{Q} \qquad {}_{w}E_{1}^{0,2} = H^{2}(\bar{X}, \mathbb{Q}) \cong \mathbb{Q}(-1)^{10}$$

$$\int_{w}^{1} d^{-1,2} d^{-1,2} = H^{0}(D(1), \mathbb{Q})(-1) \cong \mathbb{Q}(-1)^{12}$$

$${}_{w}E_{1}^{0,4} = H^{4}(\bar{X},\mathbb{Q}) \cong \mathbb{Q}(-2)$$

$$\uparrow^{d^{-1,4}}$$

$${}_{w}E_{1}^{-1,4} = H^{2}(D(1),\mathbb{Q})(-1) \cong \mathbb{Q}(-2)^{12}$$

$$\uparrow^{d^{-2,4}}$$

$${}_{w}E_{1}^{-2,4} = H^{0}(D(2),\mathbb{Q})(-2) \cong \mathbb{Q}(-2)^{12}$$

where the maps $d^{-m,m+k}$ correspond to the sum of the Gysin maps associated to the mappings of the components of D(m) into the components of D(m-1).

We have $d^{-1,2}([L_{ij}]) = (L_{ij} \cdot F)[F] + \sum_{k=1}^{9} (L_{ij} \cdot E_k)[E_k] \in H^2(\bar{X}, \mathbb{Q})$ and from the equations for L_{ij} and E_k above we compute the matrix

1	1	1	1	1	1	1	1	1	1	1	1	1 \
1	0	0	1	1	0	0	0	1	0	1	0	0
	1	0	0	0	1	0	0	0	1	1	0	0
	0	1	0	0	0	1	1	0	0	1	0	0
Ì	0	0	1	0	0	1	0	0	1	0	1	0
	0	1	0	0	1	0	0	1	0	0	1	0
	1	0	0	1	0	0	1	0	0	0	1	0
l	0	0	1	0	1	0	1	0	0	0	0	1
	1	0	0	0	0	1	0	1	0	0	0	1
l	0	1	0	1	0	0	0	0	1	0	0	1/

for $d^{-1,2}$ and conclude $rk d^{-1,2} = 9$.

For $d^{-2,4}$ we have $d^{-2,4}([P_{ij}]) = \sum_{k=1}^{3} (P_{ij} \cdot L_{ik})[L'_{ik}] = [L'_{ij}] - [L'_{ij-1}] \in H^2(D(1), \mathbb{Q})$, where $i \in \{1, \rho, \rho^2, \infty\}$, $j \in \mathbb{Z}/3\mathbb{Z}$ and $[L'_{ij}]$ is the cohomology class of a point on L_{ij} . Since the order of the three lines L_{ij} can be freely chosen, the equation for $d^{-2,4}$ is only fixed up to sign. However, we obtain $rk d^{-2,4} = 8$.

For the single complex $_{w}E_{1}^{\bullet}$

$$({}_{w}E_{1}^{0} = H^{0}(\bar{X}, \mathbb{Q}) \cong \mathbb{Q}) \xrightarrow{0} ({}_{w}E_{1}^{1} = H^{0}(D(1), \mathbb{Q})(-1) \cong \mathbb{Q}(-1)^{12}) \xrightarrow{(d^{-1,2},0)} ({}_{w}E_{1}^{2} = H^{2}(\bar{X}, \mathbb{Q}) \oplus H^{0}(D(2), \mathbb{Q})(-2) \cong \mathbb{Q}(-1)^{10} \oplus \mathbb{Q}(-2)^{12}) \xrightarrow{0 \oplus d^{-2,4}} ({}_{w}E_{1}^{3} = H^{2}(D(1), \mathbb{Q})(-1) \cong \mathbb{Q}(-2)^{12}) \xrightarrow{d^{-1,4}} ({}_{w}E_{1}^{4} = H^{4}(\bar{X}, \mathbb{Q}) \cong \mathbb{Q}(-2)) \rightarrow 0,$$

we have $H^k({}_wE_1^{\bullet}) = Gr_{\bullet}^W H^k(X)_{\mathbb{Q}}$ as mixed Hodge structures over \mathbb{Q} by [3, Théorème 2.3.5]. From $H^4(X, \mathbb{Q}) = 0$ we obtain $rk d^{-1,4} = 1$ and, therefore,

$$H^{0}(X, \mathbb{Q}) = Gr_{0}^{W}H^{0}(X)_{\mathbb{Q}} \cong \mathbb{Q},$$

$$H^{1}(X, \mathbb{Q}) = Gr_{2}^{W}H^{1}(X)_{\mathbb{Q}} \cong \mathbb{Q}(-1)^{3},$$

$$H^{3}(X, \mathbb{Q}) = Gr_{2}^{W}H^{3}(X)_{\mathbb{Q}} \cong \mathbb{Q}(-2)^{3}$$

and

$$Gr^{W}_{\bullet}H^{2}(X)_{\mathbb{Q}}=Gr^{W}_{2}H^{2}(X)_{\mathbb{Q}}\oplus Gr^{W}_{4}H^{2}(X)_{\mathbb{Q}}\cong \mathbb{Q}(-1)\oplus \mathbb{Q}(-2)^{4}.$$

As complex analytical fibration, $f: X \to S$ admits no monodromy in its relative real dimension and we have $R^2 f_* \mathbb{Q}_X \cong \mathbb{Q}_S(-1)$. For any fibre X_s of X we therefore obtain

$$H^{3}(X, X_{s}; \mathbb{Q}) \cong H^{1}(S, \{s\}; \mathbb{R}^{2} f_{*} \mathbb{Q}_{X}) \cong H^{1}(S, \{s\}; \mathbb{Q}_{S}(-1))$$
$$\cong H^{1}(S, \{s\}; \mathbb{Q})(-1) \cong H^{1}(S, \mathbb{Q})(-1) \cong \mathbb{Q}(-2)^{3},$$

where the first isomorphism is given by the Leray spectral sequence and the last is given by $H^1(S, \mathbb{Q}) \cong \mathbb{Q}(-1)^3$, which can be easily checked from the weight spectral sequence corresponding to $S \hookrightarrow \mathbb{P}^1_{\mathbb{C}}$.

If we consider now the relative cohomology sequence

$$\cdots \longrightarrow H^{1}(X, \mathbb{Q}) \xrightarrow{i^{i}=0} H^{1}(X_{s}, \mathbb{Q}) \xrightarrow{\delta^{1}} H^{2}(X, X_{s}; \mathbb{Q})$$
$$\xrightarrow{p^{2}} H^{2}(X, \mathbb{Q}) \xrightarrow{i^{2}} H^{2}(X_{s}, \mathbb{Q}) \xrightarrow{\delta^{2}} H^{3}(X, X_{s}; \mathbb{Q}) \longrightarrow \cdots$$

for $X_s \hookrightarrow X$ as exact sequence of mixed Hodge structures over \mathbb{Q} , then we see that $\delta^2 = 0$ because of different weights. Thus, the homomorphism i_2 is surjective and $H^2(X_s) \cong \mathbb{Z}(-1)$ implies that i_2 is isomorphic to a projection $H^2(X, \mathbb{Q}) \longrightarrow Gr_2^W H^2(X)_{\mathbb{Q}} = W_2 H^2(X)_{\mathbb{Q}}$. This means that $W_2 H^2(X)_{\mathbb{Q}}$ is a direct summand of $H^2(X)_{\mathbb{Q}}$ as mixed Hodge structure over \mathbb{Q} and, therefore, we obtain that $H^2(X)_{\mathbb{Q}} = Gr_2^W H^2(X)_{\mathbb{Q}} \oplus Gr_4^W H^2(X)_{\mathbb{Q}} \cong \mathbb{Q}(-1) \oplus \mathbb{Q}(-2)^4$. \Box

With the notation from the last paragraph of the proof we also have $rk p^2 = 4$ and we obtain by

$$0 \to H^1(X_s, \mathbb{Q}) \xrightarrow{\delta^1} H^2(X, X_s; \mathbb{Q}) \xrightarrow{p^2} \operatorname{im} p^2 \to 0$$

an element $\eta_s \in \operatorname{Ext}_{(\mathbb{Q}mH_s)}(\mathbb{Q}(-2)^4, H^1(X_s)_{\mathbb{Q}})$. Although it would not hurt much if we deal with mixed Hodge structures over \mathbb{Q} , the following Proposition 2 implies that η_s is already defined over \mathbb{Z} , i.e. as element in $\operatorname{Ext}_{(mH_s)}(\mathbb{Z}(-2)^4, H^1X_s)$.

Lemma. $H^2(X,\mathbb{Z})$ is torsion free.

Proof. For $S = \mathbb{P}^1_{\mathbb{C}} - \{1, \rho, \rho^2, \infty\} \approx S^2 - \{four points\}$, we fix two open subsets S_1 and S_2 with $S_1 \cup S_2 = S$, $S_1 \cap S_2 = S_3 \amalg S_4 \amalg S_5 \amalg S_6$ and S_1, \ldots, S_6 are all homeomorphic to the open disc B^2 . We put $W_i = X|_{S_i}$ and obtain the Mayer-Vietoris sequence

$$\cdots \to H_3 X \xrightarrow{\delta_2} H_2 W_3 \oplus H_2 W_4 \oplus H_2 W_5 \oplus H_2 W_6 \xrightarrow{i_2} H_2 W_1 \oplus H_2 W_2 \xrightarrow{j_2} H_2 X$$
$$\xrightarrow{\delta_1} H_1 W_3 \oplus H_1 W_4 \oplus H_1 W_5 \oplus H_1 W_6 \xrightarrow{i_1} H_1 W_1 \oplus H_1 W_2 \xrightarrow{j_1} H_1 X$$
$$\xrightarrow{\delta_0} H_0 W_3 \oplus H_0 W_4 \oplus H_0 W_5 \oplus H_0 W_6 \xrightarrow{i_0} H_0 W_1 \oplus H_0 W_2 \xrightarrow{j_0} H_0 X \to 0.$$

Since $S_i \approx B^2$ are simply connected, the maps $W_i \to S_i$ are orientable fibrations in the sense of [10, Theorem 9.3.17]. Consequently, $H_k W_i \cong H_k T$ for i = 1, ..., 6, where T denotes the oriented topological torus. If $\sigma_i : T \hookrightarrow W_i$ is a orientation preserving map of T onto one of the fibres of W_i , then $H_2 W_i = \mathbb{Z} \cdot [\sigma_i T]$. Since there is no monodromy for $X \to S$ in the relative dimension, we obtain as matrix representation for i_2

$$\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)$$

and we have coker i_2 , and hence, H^2X torsionfree. \Box

In the beginning we asked, whether there is an inclusion $\alpha:\mathbb{Z}(-2) \hookrightarrow H^2X$, such that the resulting short exact sequence $0 \to H^1X \to N_{\alpha} \to \text{im } \alpha \to 0$ is a non-splitting extension of mixed Hodge structures. This is now equivalent to the question, whether $\eta_s \neq 0$. To answer this question we gather the following facts.

Proposition 2. For any $s \in X$ we have $\eta_s \neq 0$ if and only if there are an element $\omega \in F^2H^2(X, X_s)_{\mathbb{C}}$ already defined over \mathbb{Z} and a 2-chain T_s on X with boundary in X_s , such that

$$\int_{\omega} T_s \notin \mathbb{Z}.$$

206

Proof. For describing the general shape of an element $\eta \in \operatorname{Ext}_{(mH_s)}(\mathbb{Z}(-2)^4, H^1X_s)$, we fix for $\mathbb{Z}(-2)^4$ a basis (t_1, \ldots, t_4) and for $X_s \cong \mathbb{C}/\mathbb{Z}\tau + \mathbb{Z}$ a basis (a, b) in H^1X_s dual to the generators of the lattice. As in [13, Section 10], we have

$$\operatorname{Ext}_{(mH_s)}(\mathbb{Z}(-2)^4, H^1X_s)$$

= $\operatorname{Hom}_{\mathbb{C}}(\mathbb{Z}(-2)^4_{\mathbb{C}}, H^1(X_s)_{\mathbb{C}})/(F^0\operatorname{Hom}(\mathbb{Z}(-2)^4, H^1X_s)_{\mathbb{C}})$
+ $\operatorname{Hom}_{\mathbb{C}}(\mathbb{Z}(-2)^4, H^1X_s))$
= $\operatorname{Hom}_{\mathbb{C}}(\mathbb{Z}(-2)^4, H^1(X_s)_{\mathbb{C}})/\operatorname{Hom}_{\mathbb{C}}(\mathbb{Z}(-2)^4, H^1X_s) \cong \mathbb{C}^8/\mathbb{Z}^8$

If η_s corresponds under this canonical isomorphism to a matrix (η_s^{ij}) , then we have

$$\begin{split} W_{0}H^{2}(X,X_{s})_{\mathbb{Q}} &= 0, & F^{0}H^{2}(X,X_{s})_{\mathbb{C}} = \mathbb{C}a + \mathbb{C}b + \sum \mathbb{C}t_{i}, \\ W_{1}H^{2}(X,X_{s})_{\mathbb{Q}} &= W_{2}H^{2}(X,X_{s})_{\mathbb{Q}}, & F^{1}H^{2}(X,X_{s})_{\mathbb{C}} = \mathbb{C}(\tau a + b) \\ &= W_{3}H^{2}(X,X_{s})_{\mathbb{Q}} = \mathbb{Q}a + \mathbb{Q}b, & + \sum \mathbb{C}(t_{i} + \eta_{s}^{1i}a + \eta_{s}^{2i}b), \\ F^{2}H^{2}(X,X_{s})_{\mathbb{C}} &= \sum \mathbb{C}(t_{i} + \eta_{s}^{1i}a + \eta_{s}^{2i}b), \\ W_{4}H^{2}(X,X_{s})_{\mathbb{Q}} = \mathbb{Q}a + \mathbb{Q}b + \sum \mathbb{Q}t_{i}, & F^{3}H^{2}(X,X_{s})_{\mathbb{C}} = 0 \end{split}$$

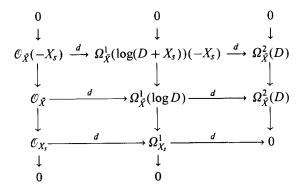
and our claim becomes obvious. \Box

Proposition 3. $F^2H^2(X,X_s)_{\mathbb{C}}$ is canonically isomorphic to $H^0(\bar{X},\Omega^2_{\bar{X}}(D))$ via integration.

Proof. For obtaining the concrete Hodge filtration on $H^2(X, X_s)$, we consider the *relative log-complex* (cf. [7, p. 449]) given by $\Omega^{\bullet}_{\bar{X}}(\log(D+X_s))(-X_s) = \ker(\Omega^{\bullet}_{\bar{X}}(\log D) \twoheadrightarrow \Omega^{\bullet}_{\bar{X}})$. Associated to the short exact sequence of complexes

$$0 \to \Omega^{\bullet}_{\tilde{X}}(\log(D+X_s))(-X_s) \to \Omega^{\bullet}_{\tilde{X}}(\log D) \to \Omega^{\bullet}_{X_s} \to 0$$

we have the commutative diagram



with zero lines and exact columns.

We have a canonical isomorphism $H^k(X, X_s; \mathbb{C}) = \mathbb{H}^k(\bar{X}, \Omega^{\bullet}_{\bar{X}}(\log(D+X_s))(-X_s))$. For any complex K^{\bullet} we denote with $\sigma_{\geq \bullet}K^{\bullet}$ the obvious (sometimes also called stupid) filtration of K^{\bullet} , i.e. $\sigma_{\geq p}K^i = K^i$ for $i \geq p$ and $\sigma_{\geq p}K^i = 0$ for i < p. In general, the Hodge filtration on the cohomology groups of a smooth algebraic variety is induced by the obvious filtration of the log-complex associated to a suitably chosen completion (cf. [3, Section 3]). In our relative situation we obtain $F^pH^2(X, X_s)_{\mathbb{C}}$ as image of $\mathbb{H}^2(\bar{X}, \sigma_{\geq p}\Omega^{\bullet}_{\bar{X}}(\log(D + X_s))(-X_s))$ in $\mathbb{H}^2(\bar{X}, \Omega^{\bullet}_{\bar{X}}(\log(D + X_s))(-X_s))$ analogously as in the proof of [4, Proposition 8.3.9]. To determine this image we consider the spectral sequences of hypercohomology $\bar{E}_1^{p,q} \Rightarrow \mathbb{H}^{p+q}(\bar{X}, \Omega^{\bullet}_{\bar{X}}(\log(D + X_s))(-X_s))$ and $E_1^{p,q} \Rightarrow \mathbb{H}^{p+q}(\bar{X}, \Omega^{\bullet}_{\bar{X}}(\log D))$ with the corresponding tables of non-vanishing entries

$$\begin{split} H^{0}(\bar{X}, \mathcal{O}_{\bar{X}}(-X_{s})) & \xrightarrow{\bar{d}_{1}^{0,0}} H^{0}(\bar{X}, \Omega_{\bar{X}}^{1}(\log(D+X_{s}))(-X_{s})) \xrightarrow{\bar{d}_{1}^{1,0}} H^{0}(\bar{X}, \Omega_{\bar{X}}^{2}(D)), \\ H^{1}(\bar{X}, \mathcal{O}_{\bar{X}}(-X_{s})) & \xrightarrow{\bar{d}_{1}^{0,1}} H^{1}(\bar{X}, \Omega_{\bar{X}}^{1}(\log(D+X_{s}))(-X_{s})) \xrightarrow{\bar{d}_{1}^{1,1}} H^{1}(\bar{X}, \Omega_{\bar{X}}^{2}(D)), \\ H^{2}(\bar{X}, \mathcal{O}_{\bar{X}}(-X_{s})) \xrightarrow{\bar{d}_{1}^{0,2}} H^{2}(\bar{X}, \Omega_{\bar{X}}^{1}(\log(D+X_{s}))(-X_{s})) \xrightarrow{\bar{d}_{1}^{1,2}} H^{2}(\bar{X}, \Omega_{\bar{X}}^{2}(D)) \end{split}$$

and

$$\begin{split} &H^{0}(\bar{X}, \mathcal{O}_{\bar{X}}(-X_{s})) \xrightarrow{d_{1}^{0,0}} H^{0}(\bar{X}, \Omega_{\bar{X}}^{1}(\log D)) \xrightarrow{d_{1}^{1,0}} H^{0}(\bar{X}, \Omega_{\bar{X}}^{2}(D)), \\ &H^{1}(\bar{X}, \mathcal{O}_{\bar{X}}(-X_{s})) \xrightarrow{d_{1}^{0,1}} H^{1}(\bar{X}, \Omega_{\bar{X}}^{1}(\log D)) \xrightarrow{d_{1}^{1,1}} H^{1}(\bar{X}, \Omega_{\bar{X}}^{2}(D)), \\ &H^{2}(\bar{X}, \mathcal{O}_{\bar{X}}(-X_{s})) \xrightarrow{d_{1}^{0,2}} H^{2}(\bar{X}, \Omega_{\bar{X}}^{1}(\log D)) \xrightarrow{d_{1}^{1,2}} H^{2}(\bar{X}, \Omega_{\bar{X}}^{2}(D)). \end{split}$$

By [3, Théorème 3.2.5] we know that $E_{\bullet}^{\bullet,\bullet}$ degenerates at $E_{1}^{\bullet,\bullet}$, i.e. $d_{p}^{\bullet,\bullet} = 0$ for $p \ge 1$. Actually also $\overline{E}_{\bullet}^{\bullet,\bullet}$ degenerates at $\overline{E}_{1}^{\bullet,\bullet}$, which can be seen, for instance, by verifying that the proof for [3, Théorème 3.2.5] also applies in the relative situation as described in [4, Section 6.3]. Another way to see this degeneration in our concrete situation is to notice that for $K = -3[F] + [E_1] + \cdots + [E_9]$ the class of the canonical divisor on \overline{X} , we have $[X_s] = -K$ and [D] = -4K in Pic \overline{X} and then apply Hirzebruch-

Riemann-Roch, Serre duality and our preknowledge about the ranks of $H^{\bullet}(X, X_s; \mathbb{C})$. But we are only interested in

$$F^{2}H^{2}(X, X_{s})_{\mathbb{C}} = \operatorname{im}(\mathbb{H}^{2}(\bar{X}, \sigma_{\geq 2}\Omega^{\bullet}_{\bar{X}}(\log(D + X_{s}))(-X_{s})))$$
$$\to \mathbb{H}^{2}(\bar{X}, \Omega^{\bullet}_{\bar{X}}(\log(D + X_{s}))(-X_{s})))$$
$$= H^{2}(\bar{X}, \Omega^{2}_{\bar{X}}(D))/(\operatorname{im}\bar{d}_{1}^{1,0}).$$

and the commutative diagram

and the injectivity of the left downarrow tells us that $im \bar{d}_1^{1,0} = 0$ and, thus, we have

$$F^2 H^2(X, X_s)_{\mathbb{C}} = H^0(\bar{X}, \Omega^2_{\bar{X}}(D)). \qquad \Box$$

Proposition 4. Let x_1, y_1, α_1 be the coordinates on U_1 as in the beginning of this paper and $\zeta_{\alpha_1} = dx_1/(3y_1^2 - 3\alpha_1x_1)$ a global holomorphic differential on the elliptic curve X_{α_1} . Then

$$\omega_{\infty} = \frac{1}{4\pi^2} \cdot \zeta_{\alpha_1} \wedge d\alpha_1$$

is an element in $H^0(\bar{X}, \Omega^2_{\bar{X}}(D)) = F^2 H^2(X, X_s)_{\mathbb{C}}$ already defined over \mathbb{Z} .

Proof. Since $Gr_4^{W}H^2(X)_{\mathbb{Q}} \otimes \mathbb{C} = F^2H^2(X)_{\mathbb{C}} = H^0(\bar{X}, \Omega_{\bar{X}}^2(D))$ we have $rk H^0(\bar{X}, \Omega_{\bar{X}}^2(D)) = 4$ and we can choose a basis $(\omega_1, \omega_\rho, \omega_{\rho^2}, \omega_{\infty})$, such that ω_i has positive pole order exactly at the three components of $X_i = L_{i1} \cup L_{i2} \cup L_{i3}$. Precisely, if l'_{ij} are the homogeneous equations for the L_{ij} , then $l_{ij} = l'_{ij}/l'_{i3}$ are rational functions on \bar{X} and we put

$$\omega_i = \frac{1}{4\pi^2} \cdot \frac{\mathrm{d}l_{i1} \wedge \mathrm{d}l_{i2}}{l_{i1}l_{i2}}.$$

The factor $1/4\pi^2$ is necessary to make sure, that the ω_i are already defined over \mathbb{Z} , i.e. if T is some 2-cycle on X, then

$$\omega_i(T) = \int_T \omega_i \in \mathbb{Z}.$$

In particular, we have

$$\omega_{\infty} = \frac{1}{4\pi^2} \cdot \frac{\mathrm{d}x_1 \wedge \mathrm{d}y_1}{x_1 y_1}$$

From the equation

$$x_1^3 + y_1^3 + 1 - 3\alpha_1 x_1 y_1 = 0,$$

we obtain

$$(3x_1^2 - 3\alpha_1y_1) dx_1 + (3y_1^2 - 3\alpha_1x_1) dy_1 - 3x_1y_1 d\alpha_1 = 0$$

and hence

$$\omega_{\infty} = \frac{1}{4\pi^2} \cdot \frac{\mathrm{d}x_1}{x_1 y_1} \wedge \left(\frac{3x_1 y_1 \mathrm{d}\alpha_1}{3y_1^2 - 3\alpha_1 x_1} - \frac{(3x_1^2 - 3\alpha_1 y_1) \mathrm{d}x_1}{3y_1^2 - 3\alpha_1 x_1} \right)$$
$$= \frac{1}{4\pi^2} \cdot \frac{\mathrm{d}x_1}{3y_1^2 - 3\alpha_1 x_1} \wedge \mathrm{d}\alpha_1. \quad \Box$$

Now, we are ready to formulate our main result:

Theorem. For a general fibre X_s of the Hessian family X, the mixed Hodge structure on the cohomology group $H^2(X, X_s)$ is a non-splitting extension of $\mathbb{Z}(-2)^4$ by $H^1(X_s)$.

Proof. We are looking for an $s \in S$, where our $\eta_s \in \operatorname{Ext}_{(mH_s)}(\mathbb{Z}(-2)^4, H^1X_s)$ does not vanish. By Propositions 2-4 it is sufficient to find a 2-chain T in X, such that ∂T is a 1-cycle in some fibre X_s and

$$\int_T \omega_\infty \not\in \mathbb{Z}$$

Let $s \in S$ be arbitrarily fixed. With ζ_s the global holomorphic differential on X_s as defined in Proposition 4 we can choose an 1-cycle C_s on X_s , such that

$$\int_{C_s} \zeta_s \neq 0.$$

Since $H^1(X, \mathbb{Z}) \to H^1(X_s, \mathbb{Z})$ is the zero map, also $H_1(X_s, \mathbb{Z}) \to H_1(X, \mathbb{Z})$ is of rank zero. Thus, there exist a 2-chain T_s on X and an integer q > 0, such that ∂T_s is homologous to qC_s . Since homologous 1-cycles on X_s are homotopic, we may assume that $\partial T_s = qC_s$.

Now, we fix a smooth path $\gamma:[0,1] \to S$ with $\gamma(0) = s$ and vary C_s along this path. Due to this variation we obtain for every $t \in [0,1]$ a 2-chain Q_t on X with $\partial Q_t = C_s - C_t$, where C_t is some 1-cycle on $X_{\gamma(t)}$. By $T_t = T_s - qQ_t$ we obtain a 2-chain on X with $\partial T_t = qC_t$. If we can show, that the continuous function $[0,1] \to \mathbb{C}$ given by

$$t \to \int_{\mathcal{T}_t} \omega_\infty$$

has not only integer values, then we are done. But for this it is enough to show that the continuous function

$$f(t) = \int_{Q_t} \omega_\infty$$

is not constantly zero for $t \in [0, 1]$.

By the Theorem of Fubini we have

$$f(t) = \frac{1}{4\pi^2} \int_{\gamma_t} \left(\int_{C_{z_1}} \zeta_{\alpha_1} \right) \mathrm{d}\alpha_1,$$

where γ_t is the path given by $\gamma|_{[0,t]}$. Since

$$\int_{C_s} \zeta_s \neq 0,$$

there exists an $\varepsilon > 0$, such that for all $t \in (0, \varepsilon)$ we have

$$\int_{\gamma_t} \left(\int_{C_{\mathbf{z}_1}} \zeta_{\mathbf{z}_1} \right) d\alpha_1 \neq 0,$$

which yields the desired result. We easily see that our statement holds for general fibres. \Box

References

- J.-L. Brylinski, S. Zucker, An overview of recent advances in Hodge theory, in: Encyclopaedia of Math. Sciences 69, Several Complex Variables VI, Springer, Berlin, 1990, pp. 39-142.
- [2] P. Deligne, Théorie de Hodge, I, Actes du Congrès International des Mathématiciens Nice 1970, I, Gauthier-Villars, Paris, 1971, pp. 425-430.
- [3] P. Deligne, Théorie de Hodge, II, Publications Mathématiques, vol. 40, IHES, 1971, pp. 5-58.
- [4] P. Deligne, Théorie de Hodge, III, Publications Mathématiques, vol. 44, IHES, 1974, pp. 5-77.
- [5] W. Fulton, Intersection Theory, Ergebnisse der Mathematik und Ihrer Grenzgebiete, 3.Folge, Band 2, Springer, Berlin, 1984.
- [6] R. Godement, Topologie Algébrique et Théorie Des Faisceaux, Publications de l'Institut de Mathématique de l'Université de Strasbourg XIII, Hermann, Paris, 1964.
- [7] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs and Tracts, Wiley, New York, 1978.
- [8] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer, Berlin, 1978.
- [9] F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd enlarged ed., Grundlehren der mathematischen Wissenschaften, Band 131, Springer, Berlin, 1966.
- [10] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
- [11] J.H.M. Steenbrink, A summary of mixed Hodge theory, in: Motives, Proc. Symp. in Pure Mathematics 55, Part 1, pp. 31-41, 1993.
- [12] J.H.M. Steenbrink, Limits of Hodge structures and intermediate Jacobians, Academisch Proefschrift, 1974.
- [13] J.H.M. Steenbrink, Mixed Hodge Theory, Course at the M.R.I., Lecture Notes, 1993.