A geometric example of non-trivially mixed Hodge structures

Andreas Matuschke*
Institut für Mathematik, Humboldt-Universität zu Berlin, Raum 303, Ziegelstr. 13a, D-10099 Berlin, Germany

Communicated by F. Oort; received 20 June 1995; received in revised form 31 July 1995

Abstract

We show that for a general fibre X_{s} of the Hessian family X of elliptic curves the mixed Hodge structure on the cohomology group $H^{2}\left(X, X_{s}\right)$ is a non-splitting extension of $\mathbb{Z}(-2)^{4}$ by $H^{1}\left(X_{s}\right)$. © 1998 Elsevier Science B.V.

1991 Math. Subj. Class.: 14C30, 14D07, 57R19

This paper is the object of the author's test problem within the courses of the Master Class 1994/1995 at the Mathematical Research Institute in the Netherlands. This problem was given to me and supervised by J. Steenbrink from the Katholieke Universiteit Nijmegen. As I understood, the question arose to him after being confronted with a lecture of C. Deninger concerning the relation between extensions of mixed motives and higher K-groups.

We choose homogeneous coordinates $(x: y: z)$ on $\mathbb{P}_{\mathbb{C}}^{2}$ and $(\alpha: \beta)$ on $\mathbb{P}_{\mathbb{C}}^{1}$ and consider the projective complex surface

$$
\bar{X}=\left\{\beta x^{3}+\beta y^{3}+\beta z^{3}-3 \alpha x y z=0\right\} \subset \mathbb{P}_{\mathbb{C}}^{2} \times \mathbb{P}_{\mathbb{C}}^{1}
$$

together with the flat morphism $\bar{f}: \bar{X} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ induced by the second projection. We have \bar{X} as blowing up of $\mathbb{P}_{\mathbb{C}}^{2}$ in 9 points due to the first projection, precisely as blowing up with centre in $V_{+}\left(x^{3}+y^{3}+z^{3}, x y z\right)$. We think of \mathbb{C} as embedded into $\mathbb{P}_{\mathbb{C}}^{1}$ by identifying $\lambda \in \mathbb{C}$ with the point $(i: 1) \in \mathbb{P}_{\mathbb{C}}^{1}(\mathbb{C})$ and we will denote the point $(1: 0)$ with ∞. For $s \in \mathbb{P}_{\mathbb{C}}^{1}$ we denote with X_{s} the fibre of \bar{f} over s. If ρ is the third root of

[^0]Table 1

Subset in $\mathbb{P}^{2} \times \mathbb{P}^{1}$	Coordinates/equations
$U_{\mathrm{I}}=\{\beta \neq 0, z \neq 0\}$	$x_{1}=x / z, y_{1}=y / z, \alpha_{1}=\alpha / \beta$
	$f_{1}=x_{1}^{3}+y_{1}^{3}+1-3 \alpha_{1} x_{1} y_{1}$
$U_{2}=\{\beta \neq 0, y \neq 0\}$	$g_{1}=x_{1}^{3}-1$
	$x_{2}=x / y, y_{2}=z / y, \alpha_{2}=\alpha / \beta$
	$f_{1}=x_{2}^{3}+y_{2}^{3}+1-3 x_{2} x_{2} y_{2}$
$U_{3}=\{\alpha \neq 0, x-z \neq 0\}$	$g_{1}=\alpha_{2}^{3}-1$
	$x_{3}=x /(x-z), y_{3}=y /(x-z), \alpha_{3}=\beta / \alpha$
	$f_{3}=2 \alpha_{3} x_{3}^{3}-3 \alpha_{3} x_{3}^{2}+3 x_{3} x_{3}-\alpha_{3}-3 x_{3}^{2} y_{3}+3 x_{3} y_{3}$
$U_{4}=\{\alpha \neq 0, x-y \neq 0\}$	$g_{3}=\alpha_{3}^{4}-\alpha_{3}$
	$x_{4}=x /(x-y), y_{4}=z /(x-y), \alpha_{4}=\beta / \alpha$
	$f_{4}=2 \alpha_{4} x_{4}^{3}-3 \alpha_{4} x_{4}^{2}+3 x_{4} x_{4}-\alpha_{4}-3 x_{4}^{2} y_{4}+3 x_{4} y_{4}$
	$g_{4}=\alpha_{4}^{4}-\alpha_{4}$

unity $(-1+\sqrt{-3}) / 2$, then $X_{1}, X_{\rho}, X_{\rho^{2}}$ and X_{∞} are the singular fibres of \bar{f}, each of them isomorph to three lines crossing in three different points. For $S=\mathbb{P}_{\mathbb{C}}^{1}-\left\{1, \rho, \rho^{2}, \infty\right\}$, $D=X_{1} \cup X_{\rho} \cup X_{\rho^{2}} \cup X_{\infty}, X=\bar{X}-D$ and $f=\left.\bar{f}\right|_{X}$, we have $f: X \rightarrow S$ as a smooth projective family of elliptic curves, known as Hessian family. This family admits an interpretation as universal family of elliptic curves with weak level-3 structure. The various statements in this second paragraph can be checked easily from an open affine covering $\bar{X}=\bigcup V_{i}$ given by the Table 1 with $V_{i}=V\left(f_{i}\right) \subset U_{i}=\operatorname{Spec} \mathbb{C}\left[x_{i}, y_{i}, \alpha_{i}\right]$ and with $D \cap V_{i}=V\left(g_{i}\right) \subset V_{i}$.

If we consider for an arbitrary point $s \in S$ the embedding $X_{s} \hookrightarrow X$, then the long exact sequence of relative cohomology groups

$$
\cdots \rightarrow H^{1}(X) \rightarrow H^{1}\left(X_{s}\right) \rightarrow H^{2}\left(X, X_{s}\right) \rightarrow H^{2}(X) \rightarrow H^{2}\left(X_{s}\right) \rightarrow \cdots
$$

is an exact sequence of the associated mixed Hodge structures by [4, 8.3.9]. For any inclusion $\alpha: \mathbb{Z}(-2) \hookrightarrow H^{2}(X)$ the image of $\operatorname{im} \alpha$ in $H^{2}\left(X_{s}\right)$ vanishes, as the weights are different. Since \bar{X} is rational, we have $H^{1}(\bar{X})=0$ and since $W_{1} H^{1}(X)_{\mathbb{Q}}=\operatorname{im}\left(H^{1}(\bar{X}, \mathbb{Q})\right.$ $\rightarrow H^{1}(X, \mathbb{Q})$), we conclude that the weights occurring in $H^{1}(X)$ are greater than 1. Therefore, $H^{1}(X) \rightarrow H^{1}\left(X_{s}\right)$ is the zero map and if we let N_{α} denote the inverse image of im α in $H^{2}\left(X, X_{s}\right)$, then we obtain by the short exact sequence

$$
0 \rightarrow H^{1}\left(X_{s}\right) \rightarrow N_{\alpha} \rightarrow \operatorname{im} \alpha \rightarrow 0
$$

an element $\eta_{\alpha} \in \operatorname{Ext}_{\left(m H_{s}\right)}\left(H^{1}\left(X_{s}\right), \mathbb{Z}(-2)\right)$. The question is, if η_{α} is non-trivial and what is the geometric meaning of these extensions. A first step on this way is

Proposition 1. For the mixed \mathbb{Q}-Hodge structures on the non-vanishing rational cohomology groups of X we have isomorphisms $H^{0}(X)_{\mathbb{Q}} \cong \mathbb{Q}, H^{1}(X)_{\mathbb{Q}} \cong \mathbb{Q}(-1)^{3}, H^{2}(X)_{\mathbb{Q}}$ $\cong \mathbb{Q}(-1) \oplus \mathbb{Q}(-2)^{4}$ and $H^{3}(X)_{\mathbb{Q}} \cong \mathbb{Q}(-2)^{3}$.

Proof. We are to use the weight spectral sequence with respect to the compactification $X \hookrightarrow \bar{X}$ as in $\left[3\right.$, Theorème 2.3.5]. For that we recall that $H^{0}(\bar{X})=\mathbb{Z}, H^{4}(\bar{X})=\mathbb{Z}(-2)$, $H^{1}(\bar{X})=H^{3}(\bar{X})=0$ and $H^{2}(\bar{X})=\mathbb{Z}(-1)^{10}$, where as generators for $H^{2}(\bar{X})$ we can choose the cohomology classes of F, E_{1}, \ldots, E_{9} with F a general line on \bar{X}, i.e. coming from $\mathbb{P}_{\mathbb{C}}^{2}$ and E_{1}, \ldots, E_{9} the exceptional lines of the blowing up $\bar{X} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$. Every line E_{i} corresponds to the blowing up of $\mathbb{P}_{\mathbb{C}}^{2}$ in a point e_{i} and for later computations we fix

$$
\begin{array}{lll}
e_{1}=(0:-1: 1), & e_{4}=(-1: 0: 1), & e_{7}=(-1: 1: 0), \\
e_{2}=(0:-\rho: 1), & e_{5}=(-\rho: 0: 1), & e_{8}=(-\rho: 1: 0), \\
e_{3}=\left(0:-\rho^{2}: 1\right), & e_{6}=\left(-\rho^{2}: 0: 1\right), & e_{9}=\left(-\rho^{2}: 1: 0\right) .
\end{array}
$$

Let $D(m)$ be the normalisation of all m-fold intersections of components of D. For $i \in\left\{1, \rho, \rho^{2}, \infty\right\}$ we have $X_{i}=L_{i 1} \cup L_{i 2} \cup L_{i 3}$ with $L_{i j} \cong \mathbb{P}_{\mathbb{C}}^{1}$ due to the equations

$$
\begin{array}{ll}
L_{11}=V_{+}\left(\alpha-\beta,\left(1-\rho^{2}\right) x+(\rho-1) y+\left(\rho^{2}-\rho\right) z\right), \\
L_{\rho 1}=V_{+}\left(\rho^{2} \alpha-\beta,\left(\rho^{2}-\rho\right) x+(\rho-1) y+(\rho-1) z\right), \\
L_{12}=V_{+}\left(\alpha-\beta,(1-\rho) x+\left(\rho^{2}-1\right) y+\left(\rho-\rho^{2}\right) z\right), \\
L_{\rho 2}=V_{+}\left(\rho^{2} \alpha-\beta,\left(\rho^{2}-1\right) x+\left(\rho^{2}-1\right) y+(1-\rho) z\right), \\
L_{13}=V_{+}\left(\alpha-\beta,\left(\rho-\rho^{2}\right) x+\left(\rho-\rho^{2}\right) y+\left(\rho-\rho^{2}\right) z\right), \\
L_{\rho 3}=V_{+}\left(\rho^{2} \alpha-\beta,(\rho-1) x+\left(\rho^{2}-\rho\right) y+(\rho-1) z\right), \\
L_{\rho^{2} 1}=V_{+}\left(\rho \alpha-\beta,(\rho-1) x+(\rho-1) y+\left(1-\rho^{2}\right) z\right), & \\
L_{\rho^{2} 2}=V_{+}\left(\rho \alpha-\beta,\left(\rho-\rho^{2}\right) x+\left(\rho^{2}-1\right) y+\left(\rho^{2}-1\right) z\right), & L_{\infty 2}=V_{+}(\beta, x), \\
L_{\rho^{2} 3}=V_{+}\left(\rho \alpha-\beta,\left(1-\rho^{2}\right) x+\left(\rho^{2}-\rho\right) y+\left(1-\rho^{2}\right) z\right), & L_{\infty 3}=V_{+}(\beta, z) .
\end{array}
$$

We put $P_{i 1}=L_{i 3} \cap L_{i 1}, P_{i 2}=L_{i 1} \cap L_{i 2}$ and $P_{i 3}=L_{i 2} \cap L_{i 3}$ and obtain $D(0)=\bar{X}, D(1)=$ $\coprod L_{i j}, D(2)=\coprod P_{i j}$ and $D(m)=\emptyset$ for $m>2$. Thus, the weight spectral sequence

$$
{ }_{w} E_{1}^{-m, m+k}=H^{k-m}(D(m), \mathbb{Q})(-m) \Rightarrow G r_{m+k}^{W} H^{k}(X)_{\mathbb{Q}}
$$

has the table of non-vanishing entries

$$
\begin{aligned}
& { }_{w} E_{1}^{0,0}=H^{0}(\bar{X}, \mathbb{Q}) \cong \mathbb{Q} \quad{ }_{w} E_{1}^{0,2}=H^{2}(\bar{X}, \mathbb{Q}) \cong \mathbb{Q}(-1)^{10} \\
& { }_{w} E_{1}^{-1,2}=H^{0}(D(1), Q)(-1) \cong \mathbb{Q}(-1)^{12} \\
& { }_{w} E_{1}^{0,4}=H^{4}(\bar{X}, \mathbb{Q}) \cong \mathbb{Q}(-2) \\
& \uparrow d^{-1,4} \\
& { }_{w} E_{1}^{-1,4}=H^{2}(D(1), \mathbb{Q})(-1) \cong \mathbb{Q}(-2)^{12} \\
& \uparrow d^{-2,4} \\
& { }_{w} E_{1}^{-2,4}=H^{0}(D(2), \mathbb{Q})(-2) \cong \mathbb{Q}(-2)^{12}
\end{aligned}
$$

where the maps $d^{-m, m+k}$ correspond to the sum of the Gysin maps associated to the mappings of the components of $D(m)$ into the components of $D(m-1)$.

We have $d^{-1,2}\left(\left[L_{i j}\right]\right)=\left(L_{i j} \cdot F\right)[F]+\sum_{k=1}^{9}\left(L_{i j} \cdot E_{k}\right)\left[E_{k}\right] \in H^{2}(\bar{X}, \mathbb{Q})$ and from the equations for $L_{i j}$ and E_{k} above we compute the matrix

$$
\left(\begin{array}{llllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

for $d^{-1,2}$ and conclude $r k d^{-1,2}=9$.
For $d^{-2,4}$ we have $d^{-2,4}\left(\left[P_{i j}\right]\right)=\sum_{k=1}^{3}\left(P_{i j} \cdot L_{i k}\right)\left[L_{i k}^{\prime}\right]=\left[L_{i j}^{\prime}\right]-\left[L_{i j-1}^{\prime}\right] \in H^{2}(D(1), \mathbb{Q})$, where $i \in\left\{1, \rho, \rho^{2}, \infty\right\}, j \in \mathbb{Z} / 3 \mathbb{Z}$ and $\left[L_{i j}^{\prime}\right]$ is the cohomology class of a point on $L_{i j}$. Since the order of the three lines $L_{i j}$ can be freely chosen, the equation for $d^{-2,4}$ is only fixed up to sign. However, we obtain $r k d^{-2,4}=8$.

For the single complex ${ }_{w} E_{1}^{*}$

$$
\begin{aligned}
& \left({ }_{w} E_{1}^{0}=H^{0}(\bar{X}, \mathbb{Q}) \cong \mathbb{Q}\right) \xrightarrow{0}\left({ }_{w} E_{1}^{1}=H^{0}(D(1), \mathbb{Q})(-1) \cong \mathbb{Q}(-1)^{12}\right) \\
& \begin{array}{l}
\xrightarrow{\stackrel{\left(d^{-1,2}, 0\right)}{ }}\left({ }_{w} E_{1}^{2}=H^{2}(\bar{X}, \mathbb{Q}) \oplus H^{0}(D(2), \mathbb{Q})(-2) \cong \mathbb{Q}(-1)^{10} \oplus \mathbb{Q}(-2)^{12}\right) \\
\xrightarrow{d^{-1,4}}\left(w E_{1}^{3}=H^{2}(D(1), \mathbb{Q})(-1) \cong \mathbb{Q}(-2)^{12}\right) \\
\\
\left.w_{1} E_{1}^{4}=H^{4}(\bar{X}, \mathbb{Q}) \cong \mathbb{Q}(-2)\right) \rightarrow 0,
\end{array}
\end{aligned}
$$

we have $H^{k}\left({ }_{w} E_{1}^{*}\right)=G r_{\bullet}^{W} H^{k}(X)_{\mathbb{Q}}$ as mixed Hodge structures over \mathbb{Q} by [3, Théorème 2.3.5]. From $H^{4}(X, \mathbb{Q})=0$ we obtain $r k d^{-1,4}=1$ and, therefore,

$$
\begin{aligned}
& H^{0}(X, \mathbb{Q})=G r_{0}^{W} H^{0}(X)_{\mathbb{Q}} \cong \mathbb{Q}, \\
& H^{1}(X, \mathbb{Q})=G r_{2}^{W} H^{1}(X)_{\mathbb{Q}} \cong \mathbb{Q}(-1)^{3}, \\
& H^{3}(X, \mathbb{Q})=G r_{2}^{W} H^{3}(X)_{\mathbb{Q}} \cong \mathbb{Q}(-2)^{3}
\end{aligned}
$$

and

$$
G r_{\cdot}^{W} H^{2}(X)_{\mathbb{Q}}=G r_{2}^{W} H^{2}(X)_{\mathbb{Q}} \oplus G r_{4}^{W} H^{2}(X)_{\mathbb{Q}} \cong \mathbb{Q}(-1) \oplus \mathbb{Q}(-2)^{4}
$$

As complex analytical fibration, $f: X \rightarrow S$ admits no monodromy in its relative real dimension and we have $R^{2} f_{*} \mathbb{Q}_{X} \cong \mathbb{Q}_{S}(-1)$. For any fibre X_{s} of X we therefore obtain

$$
\begin{aligned}
H^{3}\left(X, X_{s} ; \mathbb{Q}\right) & \cong H^{1}\left(S,\{s\} ; R^{2} f_{*} \mathbb{Q}_{X}\right) \cong H^{1}\left(S,\{s\} ; \mathbb{Q}_{S}(-1)\right) \\
& \cong H^{1}(S,\{s\} ; \mathbb{Q})(-1) \cong H^{1}(S, \mathbb{Q})(-1) \cong \mathbb{Q}(-2)^{3},
\end{aligned}
$$

where the first isomorphism is given by the Leray spectral sequence and the last is given by $H^{1}(S, \mathbb{Q}) \cong \mathbb{Q}(-1)^{3}$, which can be easily checked from the weight spectral sequence corresponding to $S \hookrightarrow \mathbb{P}_{\mathbb{C}}^{1}$.

If we consider now the relative cohomology sequence

$$
\begin{aligned}
\cdots & \rightarrow H^{1}(X, \mathbb{Q}) \xrightarrow{i^{1}=0} H^{1}\left(X_{s}, \mathbb{Q}\right) \xrightarrow{\delta^{1}} H^{2}\left(X, X_{s} ; \mathbb{Q}\right) \\
& \xrightarrow{p^{2}} H^{2}(X, \mathbb{Q}) \xrightarrow{i^{2}} H^{2}\left(X_{s}, \mathbb{Q}\right) \xrightarrow{\delta^{2}} H^{3}\left(X, X_{s} ; \mathbb{Q}\right) \rightarrow \cdots
\end{aligned}
$$

for $X_{s} \leftrightarrows X$ as exact seqence of mixed Hodge structures over \mathbb{Q}, then we see that $\delta^{2}=0$ because of different weights. Thus, the homomorphism i_{2} is surjective and $H^{2}\left(X_{s}\right) \cong \mathbb{Z}(-1)$ implies that i_{2} is isomorphic to a projection $H^{2}(X, \mathbb{Q}) \rightarrow \operatorname{Gr}_{2}^{W} H^{2}(X)_{\mathbb{Q}}$ $=W_{2} H^{2}(X)_{\mathbb{Q}}$. This means that $W_{2} H^{2}(X)_{\mathbb{Q}}$ is a direct summand of $H^{2}(X)_{\mathbb{Q}}$ as mixed Hodge structure over \mathbb{Q} and, therefore, we obtain that $H^{2}(X)_{\mathbb{Q}}=G r_{2}^{W} H^{2}(X)_{\mathbb{Q}} \oplus G r_{4}^{W}$ $H^{2}(X)_{\mathbb{Q}} \cong \mathbb{Q}(-1) \oplus \mathbb{Q}(-2)^{4}$.

With the notation from the last paragraph of the proof we also have $r k p^{2}=4$ and we obtain by

$$
0 \rightarrow H^{1}\left(X_{s}, \mathbb{Q}\right) \xrightarrow{\dot{d}^{t}} H^{2}\left(X, X_{s} ; \mathbb{Q}\right) \xrightarrow{p^{2}} \mathrm{im} p^{2} \rightarrow 0
$$

an element $\eta_{s} \in \operatorname{Ext}_{\left(\mathbb{Q}_{2} H_{s}\right)}\left(\mathbb{Q}(-2)^{4}, H^{1}\left(X_{s}\right)_{\mathbb{Q}}\right)$. Although it would not hurt much if we deal with mixed Hodge structures over \mathbb{Q}, the following Proposition 2 implies that η_{s} is already defined over \mathbb{Z}, i.e. as element in $\operatorname{Ext}_{\left(m H_{s}\right)}\left(\mathbb{Z}(-2)^{4}, H^{\mathrm{t}} X_{s}\right)$.

Lemma. $H^{2}(X, \mathbb{Z})$ is torsion free.
Proof. For $S=\mathbb{P}_{C}^{1}-\left\{1, \rho, \rho^{2}, \infty\right\} \approx S^{2}-\{$ four points $\}$, we fix two open subsets S_{1} and S_{2} with $S_{1} \cup S_{2}=S, S_{1} \cap S_{2}=S_{3} \amalg S_{4} \amalg S_{5} \amalg S_{6}$ and S_{1}, \ldots, S_{6} are all homeomorphic to the open disc B^{2}. We put $W_{i}=\left.X\right|_{S_{i}}$ and obtain the Mayer-Vietoris sequence

$$
\begin{aligned}
\cdots & \rightarrow H_{3} X \xrightarrow{\delta_{2}} H_{2} W_{3} \oplus H_{2} W_{4} \oplus H_{2} W_{5} \oplus H_{2} W_{6} \xrightarrow{i_{2}} H_{2} W_{1} \oplus H_{2} W_{2} \xrightarrow{j_{2}} H_{2} X \\
& \xrightarrow{\delta_{1}} H_{1} W_{3} \oplus H_{1} W_{4} \oplus H_{1} W_{5} \oplus H_{1} W_{6} \xrightarrow{i_{1}} H_{1} W_{1} \oplus H_{1} W_{2} \xrightarrow{j_{1}} H_{1} X \\
& \xrightarrow{\delta_{0}} H_{0} W_{3} \oplus H_{0} W_{4} \oplus H_{0} W_{5} \oplus H_{0} W_{6} \xrightarrow{i_{0}} H_{0} W_{1} \oplus H_{0} W_{2} \xrightarrow{j_{0}} H_{0} X \rightarrow 0 .
\end{aligned}
$$

Since $S_{i} \approx B^{2}$ are simply connected, the maps $W_{i} \rightarrow S_{i}$ are orientable fibrations in the sense of [10, Theorem 9.3.17]. Consequently, $H_{k} W_{i} \cong H_{k} T$ for $i=1, \ldots, 6$, where T denotes the oriented topological torus. If $\sigma_{i}: T \hookrightarrow W_{i}$ is a orientation preserving map of T onto one of the fibres of W_{i}, then $H_{2} W_{i}=\mathbb{Z} \cdot\left[\sigma_{i} T\right]$. Since there is no monodromy for $X \rightarrow S$ in the relative dimension, we obtain as matrix representation for i_{2}

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

and we have coker i_{2}, and hence, $H^{2} X$ torsionfree.

In the beginning we asked, whether there is an inclusion $\alpha: \mathbb{Z}(-2) \hookrightarrow H^{2} X$, such that the resulting short exact sequence $0 \rightarrow H^{1} X \rightarrow N_{\alpha} \rightarrow \operatorname{im} \alpha \rightarrow 0$ is a non-splitting extension of mixed Hodge structures. This is now equivalent to the question, whether $\eta_{s} \neq 0$. To answer this question we gather the following facts.

Proposition 2. For any $s \in X$ we have $\eta_{s} \neq 0$ if and only if there are an element $\omega \in F^{2} H^{2}\left(X, X_{s}\right) \mathbb{C}$ already defined over \mathbb{Z} and a 2 -chain T_{s} on X with boundary in X_{s}, such that

$$
\int_{\omega} T_{s} \notin \mathbb{Z}
$$

Proof. For describing the general shape of an element $\eta \in \operatorname{Ext}_{\left(m H_{s}\right)}\left(\mathbb{Z}(-2)^{4}, H^{1} X_{s}\right)$, we fix for $\mathbb{Z}(-2)^{4}$ a basis $\left(t_{1}, \ldots, t_{4}\right)$ and for $X_{s} \cong \mathbb{C} / \mathbb{Z} \tau+\mathbb{Z}$ a basis (a, b) in $H^{1} X_{s}$ dual to the generators of the lattice. As in [13, Section 10], we have

$$
\begin{aligned}
& \operatorname{Ext}_{\left(m H_{s}\right)}\left(\mathbb{Z}(-2)^{4}, H^{1} X_{s}\right) \\
& =\operatorname{Hom}_{\mathbb{C}}\left(\mathbb{Z}(-2)_{\mathbb{C}}^{4}, H^{1}\left(X_{s}\right) \mathbb{C}\right) /\left(F^{0} \operatorname{Hom}\left(\mathbb{Z}(-2)^{4}, H^{1} X_{s}\right) \mathbb{C}\right. \\
& \left.\quad+\operatorname{Hom}_{\mathbb{C}}\left(\mathbb{Z}(-2)^{4}, H^{1} X_{s}\right)\right) \\
& \left.=\operatorname{Hom}_{\mathbb{C}}\left(\mathbb{Z}(-2)_{\mathbb{C}}^{4}, H^{1}\left(X_{s}\right)\right)_{\mathbb{C}}\right) / \operatorname{Hom}_{\mathbb{C}}\left(\mathbb{Z}(-2)^{4}, H^{1} X_{s}\right) \cong \mathbb{C}^{8} / \mathbb{Z}^{8} .
\end{aligned}
$$

If η_{s} corresponds under this canonical isomorphism to a matrix ($\eta_{s}^{i j}$), then we have

$$
\begin{array}{ll}
W_{0} H^{2}\left(X, X_{s}\right)_{\mathbb{Q}}=0, & F^{0} H^{2}\left(X, X_{s}\right)_{\mathbb{C}}=\mathbb{C} a+\mathbb{C} b+\sum \mathbb{C} t_{i}, \\
W_{1} H^{2}\left(X, X_{s}\right)_{\mathbb{Q}}=W_{2} H^{2}\left(X, X_{s}\right)_{\mathbb{Q}}, & F^{1} H^{2}\left(X, X_{s}\right)_{\mathbb{C}}=\mathbb{C}(\tau a+b) \\
=W_{3} H^{2}\left(X, X_{s}\right)_{\mathbb{Q}}=\mathbb{Q} a+\mathbb{Q} b, & +\sum \mathbb{C}\left(t_{i}+\eta_{s}^{1 i} a+\eta_{s}^{2 i} b\right), \\
& F^{2} H^{2}\left(X, X_{s}\right)_{\mathbb{C}}=\sum \mathbb{C}\left(t_{i}+\eta_{s}^{1 i} a+\eta_{s}^{2 i} b\right), \\
W_{4} H^{2}\left(X, X_{s}\right)_{\mathbb{Q}}=\mathbb{Q} a+\mathbb{Q} b+\sum \mathbb{Q} t_{i}, & F^{3} H^{2}\left(X, X_{s}\right)_{\mathbb{C}}=0
\end{array}
$$

and our claim becomes obvious.
Proposition 3. $F^{2} H^{2}\left(X, X_{s}\right) \mathbb{C}$ is canonically isomorphic to $H^{0}\left(\bar{X}, \Omega_{\hat{X}}^{2}(D)\right)$ via integration.

Proof. For obtaining the concrete Hodge filtration on $H^{2}\left(X, X_{s}\right)$, we consider the relative log-complex (cf. [7, p. 449]) given by $\Omega_{\bar{X}}^{\bullet}\left(\log \left(D+X_{s}\right)\right)\left(-X_{s}\right)=\operatorname{ker}\left(\Omega_{\bar{X}}^{\bullet}(\log D) \rightarrow\right.$ $\Omega_{X_{s}}^{\bullet}$). Associated to the short exact sequence of complexes

$$
0 \rightarrow \Omega_{\bar{X}}^{\bullet}\left(\log \left(D+X_{s}\right)\right)\left(-X_{s}\right) \rightarrow \Omega_{\bar{X}}^{\bullet}(\log D) \rightarrow \Omega_{X_{s}}^{\bullet} \rightarrow 0
$$

we have the commutative diagram

with zero lines and exact columns.
We have a canonical isomorphism $H^{k}\left(X, X_{s} ; \mathbb{C}\right)=H^{k}\left(\bar{X}, \Omega_{\bar{X}}^{\bullet}\left(\log \left(D+X_{s}\right)\right)\left(-X_{s}\right)\right)$. For any complex K^{\bullet} we denote with $\sigma_{\geq \bullet} K^{\bullet}$ the obvious (sometimes also called stupid) filtration of K^{\bullet}, i.e. $\sigma_{\geq p} K^{i}=K^{i}$ for $i \geq p$ and $\sigma_{\geq p} K^{i}=0$ for $i<p$. In general, the Hodge filtration on the cohomology groups of a smooth algebraic variety is induced by the obvious filtration of the log-complex associated to a suitably chosen completion (cf. [3, Section 3]). In our relative situation we obtain $F^{p} H^{2}\left(X, X_{s}\right)$ c as image of $\mathbb{H}^{2}\left(\bar{X}, \sigma_{\geq p} \Omega_{\bar{X}}^{\bullet}\left(\log \left(D+X_{s}\right)\right)\left(-X_{s}\right)\right)$ in $\mathbb{H}^{2}\left(\bar{X}, \Omega_{\dot{X}}^{\bullet}\left(\log \left(D+X_{s}\right)\right)\left(-X_{s}\right)\right)$ analogously as in the proof of [4, Proposition 8.3.9]. To determine this image we consider the spectral sequences of hypercohomology $\bar{E}_{1}^{p, q} \Rightarrow \mathbb{H}^{p+q}\left(\bar{X}, \Omega_{\dot{X}}^{\bullet}\left(\log \left(D+X_{s}\right)\right)\left(-X_{s}\right)\right)$ and $E_{1}^{p, q} \Rightarrow \mathscr{H}^{p+q}\left(\bar{X}, \Omega_{\bar{X}}^{\bullet}(\log D)\right)$ with the corresponding tables of non-vanishing entries

$$
\begin{aligned}
& H^{0}\left(\bar{X}, \mathbb{C}_{\bar{X}}\left(-X_{s}\right)\right) \xrightarrow{\bar{d}_{1}^{0,0}} H^{0}\left(\bar{X}, \Omega_{\bar{X}}^{1}\left(\log \left(D+X_{s}\right)\right)\left(-X_{s}\right)\right) \xrightarrow{\bar{d}_{1}^{1,0}} H^{0}\left(\bar{X}, \Omega_{\bar{X}}^{2}(D)\right), \\
& H^{1}\left(\bar{X}, \mathcal{O}_{\bar{X}}\left(-X_{s}\right)\right) \xrightarrow{\bar{d}_{l}^{0,1}} H^{1}\left(\bar{X}, \Omega_{\bar{X}}^{1}\left(\log \left(D+X_{s}\right)\right)\left(-X_{s}\right)\right) \xrightarrow{\bar{d}_{1}^{1.1}} H^{1}\left(\bar{X}, \Omega_{\bar{X}}^{2}(D)\right), \\
& H^{2}\left(\bar{X}, \mathcal{O}_{\bar{X}}\left(-X_{s}\right)\right) \xrightarrow{\bar{d}_{1}^{0,2}} H^{2}\left(\bar{X}, \Omega_{\bar{X}}^{1}\left(\log \left(D+X_{s}\right)\right)\left(-X_{s}\right)\right) \xrightarrow{\bar{d}_{l}^{1.2}} H^{2}\left(\bar{X}, \Omega_{\bar{X}}^{2}(D)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& H^{0}\left(\bar{X}, \mathcal{C}_{\bar{X}}\left(-X_{s}\right)\right) \xrightarrow{d_{1}^{0,0}} H^{0}\left(\bar{X}, \Omega_{\bar{X}}^{1}(\log D)\right) \xrightarrow{d_{1}^{d_{1}^{1.0}}} H^{0}\left(\bar{X}, \Omega_{\bar{X}}^{2}(D)\right), \\
& H^{1}\left(\bar{X}, \mathcal{O}_{\bar{X}}\left(-X_{s}\right)\right) \xrightarrow{d_{1}^{0,1}} H^{1}\left(\bar{X}, \Omega_{\bar{X}}^{1}(\log D)\right) \xrightarrow{d_{1}^{1,1}} H^{1}\left(\bar{X}, \Omega_{\bar{X}}^{2}(D)\right), \\
& H^{2}\left(\bar{X}, \mathcal{O}_{\bar{X}}\left(-X_{s}\right)\right) \xrightarrow{d_{1}^{0,2}} H^{2}\left(\bar{X}, \Omega_{\bar{X}}^{1}(\log D)\right) \xrightarrow{d_{1}^{1.2}} H^{2}\left(\bar{X}, \Omega_{\bar{X}}^{2}(D)\right) .
\end{aligned}
$$

By [3, Théorème 3.2.5] we know that $E^{\bullet \bullet \bullet}$ degenerates at $E_{1}^{\bullet \bullet \bullet}$, i.e. $d_{p}^{\bullet \bullet \bullet}=0$ for $p \geq 1$. Actually also $\bar{E}_{\bullet}^{\bullet \bullet \bullet}$ degenerates at $\bar{E}_{1}^{\bullet \bullet \bullet}$, which can be seen, for instance, by verifying that the proof for [3, Théorème 3.2.5] also applies in the relative situation as described in [4, Section 6.3]. Another way to see this degeneration in our concrete situation is to notice that for $K=-3[F]+\left[E_{1}\right]+\cdots+\left[E_{9}\right]$ the class of the canonical divisor on \bar{X}, we have $\left[X_{s}\right]=-K$ and $[D]=-4 K$ in $\operatorname{Pic} \bar{X}$ and then apply Hirzebruch-

Riemann-Roch, Serre duality and our preknowledge about the ranks of $H^{\bullet}\left(X, X_{s} ; \mathbb{C}\right)$. But we are only interested in

$$
\begin{aligned}
F^{2} H^{2}\left(X, X_{s}\right)_{\mathbb{C}}= & \operatorname{im}\left(\mathbb{H}^{2}\left(\bar{X}, \sigma_{\geq 2} \Omega_{\bar{X}}^{\bullet}\left(\log \left(D+X_{s}\right)\right)\left(-X_{s}\right)\right)\right. \\
& \left.\rightarrow \mathbb{H}^{2}\left(\bar{X}, \Omega_{\bar{X}}^{\bullet}\left(\log \left(D+X_{s}\right)\right)\left(-X_{s}\right)\right)\right) \\
= & H^{2}\left(\bar{X}, \Omega_{\bar{X}}^{2}(D)\right) /\left(\operatorname{im} \bar{d}_{1}^{-1,0}\right) .
\end{aligned}
$$

and the commutative diagram

$$
\begin{array}{r}
H^{0}\left(\bar{X}, \Omega_{\bar{X}}^{1}\left(\log \left(D+X_{s}\right)\right)\left(-X_{s}\right)\right) \xrightarrow{\tilde{d}_{1}^{1.0}} H^{0}\left(\bar{X}, \Omega_{\bar{X}}^{2}(D)\right) \\
\downarrow \\
H^{0}\left(\bar{X}, \Omega_{\bar{X}}^{1}(\log D)\right) \xrightarrow{d_{1}^{1,0}=0}
\end{array}
$$

and the injectivity of the left downarrow tells us that $\operatorname{im} \bar{d}_{1}^{1,0}=0$ and, thus, we have

$$
F^{2} H^{2}\left(X, X_{s}\right) \mathrm{C}=H^{0}\left(\bar{X}, \Omega_{\bar{X}}^{2}(D)\right)
$$

Proposition 4. Let x_{1}, y_{1}, α_{1} be the coordinates on U_{1} as in the beginning of this paper and $\zeta_{x_{1}}=\mathrm{d} x_{1} /\left(3 y_{1}^{2}-3 \alpha_{1} x_{1}\right)$ a global holomorphic differential on the elliptic curve $X_{x_{1}}$. Then

$$
\omega_{\infty}=\frac{1}{4 \pi^{2}} \cdot \zeta_{x_{1}} \wedge \mathrm{~d} \alpha_{1}
$$

is an element in $H^{0}\left(\bar{X}, \Omega_{\bar{X}}^{2}(D)\right)=F^{2} H^{2}\left(X, X_{s}\right)_{\mathbb{C}}$ already defined over \mathbb{Z}.
Proof. Since $G r_{4}^{W} H^{2}(X)_{\mathbb{Q}} \otimes \mathbb{C}=F^{2} H^{2}(X)_{\mathbb{C}}=H^{0}\left(\bar{X}, \Omega_{\bar{X}}^{2}(D)\right)$ we have $r k H^{0}(\bar{X}$, $\left.\Omega_{\hat{X}}^{2}(D)\right)=4$ and we can choose a basis $\left(\omega_{1}, \omega_{\rho}, \omega_{\rho^{2}}, \omega_{\infty}\right)$, such that ω_{i} has positive pole order exactly at the three components of $X_{i}=L_{i 1} \cup L_{i 2} \cup L_{i 3}$. Precisely, if $l_{i j}^{\prime}$ are the homogeneous equations for the $L_{i j}$, then $l_{i j}=l_{i j}^{\prime} / l_{i 3}^{\prime}$ are rational functions on \bar{X} and we put

$$
\omega_{i}=\frac{1}{4 \pi^{2}} \cdot \frac{\mathrm{~d} l_{i 1} \wedge \mathrm{~d} l_{i 2}}{l_{i 1} l_{i 2}}
$$

The factor $1 / 4 \pi^{2}$ is necessary to make sure, that the ω_{i} are already defined over \mathbb{Z}, i.e. if T is some 2 -cycle on X, then

$$
\omega_{i}(T)=\int_{T} \omega_{i} \in \mathbb{Z}
$$

In particular, we have

$$
\omega_{\infty}=\frac{1}{4 \pi^{2}} \cdot \frac{\mathrm{~d} x_{1} \wedge \mathrm{~d} y_{1}}{x_{1} y_{1}}
$$

From the equation

$$
x_{1}^{3}+y_{1}^{3}+1-3 \alpha_{1} x_{1} y_{1}=0
$$

we obtain

$$
\left(3 x_{1}^{2}-3 \alpha_{1} y_{1}\right) \mathrm{d} x_{1}+\left(3 y_{1}^{2}-3 \alpha_{1} x_{1}\right) \mathrm{d} y_{1}-3 x_{1} y_{1} \mathrm{~d} x_{1}=0
$$

and hence

$$
\begin{aligned}
\omega_{\infty} & =\frac{1}{4 \pi^{2}} \cdot \frac{\mathrm{~d} x_{1}}{x_{1} y_{1}} \wedge\left(\frac{3 x_{1} y_{1} \mathrm{~d} \alpha_{1}}{3 y_{1}^{2}-3 \alpha_{1} x_{1}}-\frac{\left(3 x_{1}^{2}-3 \alpha_{1} y_{1}\right) \mathrm{d} x_{1}}{3 y_{1}^{2}-3 x_{1} x_{1}}\right) \\
& =\frac{1}{4 \pi^{2}} \cdot \frac{\mathrm{~d} x_{1}}{3 y_{1}^{2}-3 \alpha_{1} x_{1}} \wedge \mathrm{~d} \alpha_{1} .
\end{aligned}
$$

Now, we are ready to formulate our main result:
Theorem. For a general fibre X_{s} of the Hessian family X, the mixed Hodge structure on the cohomology group $H^{2}\left(X, X_{s}\right)$ is a non-splitting extension of $\mathbb{Z}(-2)^{4}$ by $H^{1}\left(X_{s}\right)$.

Proof. We are looking for an $s \in S$, where our $\eta_{s} \in \operatorname{Ext}_{\left(m H_{s}\right)}\left(\mathbb{Z}(-2)^{4}, H^{1} X_{s}\right)$ does not vanish. By Propositions 2-4 it is sufficient to find a 2-chain T in X, such that ∂T is a 1-cycle in some fibre X_{s} and

$$
\int_{T} \omega_{\infty} \notin \mathbb{Z} .
$$

Let $s \in S$ be arbitrarily fixed. With ζ_{s} the global holomorphic differential on X_{s} as defined in Proposition 4 we can choose an 1-cycle C_{s} on X_{s}, such that

$$
\int_{C_{s}} \zeta_{s} \neq 0
$$

Since $H^{1}(X, \mathbb{Z}) \rightarrow H^{1}\left(X_{s}, \mathbb{Z}\right)$ is the zero map, also $H_{1}\left(X_{s}, \mathbb{Z}\right) \rightarrow H_{1}(X, \mathbb{Z})$ is of rank zero. Thus, there exist a 2 -chain T_{s} on X and an integer $q>0$, such that ∂T_{s} is homologous to $q C_{s}$. Since homologous 1 -cycles on X_{s} are homotopic, we may assume that $\partial T_{s}=q C_{s}$.

Now, we fix a smooth path $\gamma:[0,1] \rightarrow S$ with $\gamma(0)=s$ and vary C_{s} along this path. Due to this variation we obtain for every $t \in[0,1]$ a 2-chain Q_{t} on X with $\partial Q_{t}=C_{s}-C_{t}$, where C_{t} is some 1-cycle on $X_{\gamma(t)}$. By $T_{t}=T_{s}-q Q_{t}$ we obtain a 2 -chain on X with $\hat{\partial} T_{t}=q C_{t}$. If we can show, that the continuous function $[0,1] \rightarrow \mathbb{C}$ given by

$$
t \rightarrow \int_{T_{t}} \omega_{\infty}
$$

has not only integer values, then we are done. But for this it is enough to show that the continuous function

$$
f(t)=\int_{Q_{i}} \omega_{\infty}
$$

is not constantly zero for $t \in[0,1]$.

By the Theorem of Fubini we have

$$
f(t)=\frac{1}{4 \pi^{2}} \int_{y_{t}}\left(\int_{C_{x_{1}}} \zeta_{x_{1}}\right) \mathrm{d} \alpha_{1}
$$

where γ_{t} is the path given by $\left.\gamma\right|_{[0, t]}$. Since

$$
\int_{C_{s}} \zeta_{s} \neq 0
$$

there exists an $\varepsilon>0$, such that for all $t \in(0, \varepsilon)$ we have

$$
\int_{\gamma_{k}}\left(\int_{C_{2_{1}}} \zeta_{\chi_{1}}\right) \mathrm{d} \alpha_{1} \neq 0
$$

which yields the desired result. We easily see that our statement holds for general fibres.

References

[1] J.-L. Brylinski, S. Zucker, An overview of recent advances in Hodge theory, in: Encyclopaedia of Math. Sciences 69, Several Complex Variables VI, Springer, Berlin, 1990, pp. 39-142.
[2] P. Deligne, Théorie de Hodge, I, Actes du Congrès International des Mathématiciens Nice 1970, I, Gauthier-Villars, Paris, 1971, pp. 425-430.
[3] P. Deligne, Théorie de Hodge, II, Publications Mathématiques, vol. 40, IHES, 1971, pp. 5-58.
[4] P. Deligne, Théorie de Hodge, III, Publications Mathématiques, vol. 44, IHES, 1974, pp. 5-77.
[5] W. Fulton, Intersection Theory, Ergebnisse der Mathematik und Ihrer Grenzgebiete, 3.Folge, Band 2, Springer, Berlin, 1984.
[6] R. Godement, Topologie Algébrique et Théorie Des Faisceaux, Publications de I'Institut de Mathématique de l'Université de Strasbourg XIII, Hermann, Paris, 1964.
[7] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, A WileyInterscience Series of Texts, Monographs and Tracts, Wiley, New York, 1978.
[8] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer, Berlin, 1978.
[9] F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd enlarged ed., Grundlehren der mathematischen Wissenschaften, Band 131, Springer, Berlin, 1966.
[10] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[11] J.H.M. Steenbrink, A summary of mixed Hodge theory, in: Motives, Proc. Symp. in Pure Mathematics 55, Part 1, pp. 3I-41, 1993.
[12] J.H.M. Steenbrink, Limits of Hodge structures and intermediate Jacobians, Academisch Proefschrift, 1974.
[13] J.H.M. Steenbrink, Mixed Hodge Theory, Course at the M.R.L., Lecture Notes, 1993.

[^0]: *Tel.: 493020931440 ; fax: 49302093 1866; e-mail: matuschk@mathematik.hu-berlin.de.

